LWC 73: 790. Domino and Tromino Tiling

本文探讨了使用2x1多米诺骨牌和“L”型三米诺骨牌铺满2xN棋盘的方法数量,并提供了解决方案的动态规划思路及Java和Python代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LWC 73: 790. Domino and Tromino Tiling

传送门:790. Domino and Tromino Tiling

Problem:

We have two types of tiles: a 2x1 domino shape, and an “L” tromino shape. These shapes may be rotated.

XX <- domino

XX <- “L” tromino
X
Given N, how many ways are there to tile a 2 x N board? Return your answer modulo 10^9 + 7.

(In a tiling, every square must be covered by a tile. Two tilings are different if and only if there are two 4-directionally adjacent cells on the board such that exactly one of the tilings has both squares occupied by a tile.)

Example:

Input: 3
Output: 5
Explanation:
The five different ways are listed below, different letters indicates different tiles:
XYZ XXZ XYY XXY XYY
XYZ YYZ XZZ XYY XXY

Note:

  • N will be in range [1, 1000].

思路:
动态规划,切分子问题。比如考虑N等于1可能出现的状态:

这里写图片描述

从上至下对应状态为0, 1, 2, 3,因此可以得到N=2时,每个状态的转移方程:

dp[i][0] = dp[i - 1][0] + dp[i - 1][3] + dp[i - 2][1] + dp[i - 2][2]
dp[i][1] = dp[i - 1][0] + dp[i - 1][2]
dp[i][2] = dp[i - 1][0] + dp[i - 1][1]
dp[i][3] = dp[i - 1][0]

代码如下:

    public int numTilings(int N) {
        long[][] dp = new long[N+1][4];
        int mod = 1000000007;
        dp[1][0] = 1;
        dp[1][1] = 1;
        dp[1][2] = 1;
        dp[1][3] = 1;
        for (int i = 2; i <= N; ++i) {
            dp[i][0] = (dp[i - 1][0] + dp[i - 1][3] + dp[i - 2][1] + dp[i - 2][2]) % mod;
            dp[i][1] = (dp[i - 1][0] + dp[i - 1][2]) % mod;
            dp[i][2] = (dp[i - 1][0] + dp[i - 1][1]) % mod;
            dp[i][3] = dp[i - 1][0] % mod;
        }
        return (int)dp[N][0];
    }

Python版本:

class Solution(object):
    def numTilings(self, N):
        """
        :type N: int
        :rtype: int
        """
        dp = [[0] * 4 for _ in range(N + 1)]
        mod = 1000000007
        dp[1][0] = dp[1][1] = dp[1][2] = dp[1][3] = 1
        for i in range(2, N + 1):
            dp[i][0] = (dp[i - 1][0] + dp[i - 1][3] + dp[i - 2][1] + dp[i - 2][2]) % mod
            dp[i][1] = (dp[i - 1][0] + dp[i - 1][2]) % mod
            dp[i][2] = (dp[i - 1][0] + dp[i - 1][1]) % mod
            dp[i][3] = dp[i - 1][0] % mod
        return dp[N][0]
class UniformAffineQuantizer(nn.Module): def __init__( self, n_bits: int = 8, symmetric: bool = False, per_channel_axes=[], metric="minmax", dynamic=False, dynamic_method="per_cluster", group_size=None, shape=None, lwc=False, disable_zero_point=False, ): """ support cluster quantize dynamic_method support per_token and per_cluster """ super().__init__() self.symmetric = symmetric self.disable_zero_point = disable_zero_point assert 2 <= n_bits <= 16, "bitwidth not supported" self.n_bits = n_bits if self.disable_zero_point: self.qmin = -(2 ** (n_bits - 1)) self.qmax = 2 ** (n_bits - 1) - 1 else: self.qmin = 0 self.qmax = 2 ** (n_bits) - 1 self.per_channel_axes = per_channel_axes self.metric = metric self.cluster_counts = None self.cluster_dim = None self.scale = None self.zero_point = None self.round_zero_point = None self.cached_xmin = None self.cached_xmax = None self.dynamic = dynamic self.dynamic_method = dynamic_method self.deficiency = 0 self.lwc = lwc init_value = 4. # inti value of learnable weight clipping if lwc: if group_size: dim1 = int(shape[0]*math.ceil(shape[1]/group_size)) self.deficiency = shape[-1]%group_size if self.deficiency > 0: self.deficiency = group_size - self.deficiency assert self.symmetric # support for mlc-llm symmetric quantization else: dim1 = shape[0] self.upbound_factor = nn.Parameter(torch.ones((dim1,1))*init_value) self.lowbound_factor = nn.Parameter(torch.ones((dim1,1))*init_value) self.sigmoid = nn.Sigmoid() self.enable = True self.group_size = group_size def change_n_bits(self, n_bits): self.n_bits = n_bits if self.disable_zero_point: self.qmin = -(2 ** (n_bits - 1)) self.qmax = 2 ** (n_bits - 1) - 1 else: self.qmin = 0 self.qmax = 2 ** (n_bits) - 1 def fake_quant(self, x, scale, round_zero_point): if self.deficiency > 0: pad_zeros = torch.zeros((x.shape[0],self.deficiency),dtype=x.dtype,device=x.device) x = torch.cat((x,pad_zeros),dim=1) if self.group_size: assert len(x.shape)==2, "only support linear layer now" dim1, dim2 = x.shape x = x.reshape(-1, self.group_size) x_int = round_ste(x / scale) if round_zero_point is not None: x_int = x_int.add(round_zero_point) x_int = x_int.clamp(self.qmin, self.qmax) x_dequant = x_int if round_zero_point is not None: x_dequant = x_dequant.sub(round_zero_point) x_dequant = x_dequant.mul(scale) if self.group_size: x_dequant = x_dequant.reshape(dim1, dim2) if self.deficiency > 0: x_dequant = x_dequant[:,:-self.deficiency] return x_dequant def forward(self, x: torch.Tensor): if self.n_bits >= 16 or not self.enable: return x if self.metric == "fix0to1": return x.mul_(2**self.n_bits-1).round_().div_(2**self.n_bits-1) if self.dynamic_method == "per_token" or self.dynamic_method == "per_channel": self.per_token_dynamic_calibration(x) else: raise NotImplementedError() x_dequant = self.fake_quant(x, self.scale, self.round_zero_point) return x_dequant def per_token_dynamic_calibration(self, x): if self.group_size: if self.deficiency == 0: x = x.reshape(-1,self.group_size) else: pad_zeros = torch.zeros((x.shape[0],self.deficiency),dtype=x.dtype,device=x.device) x = torch.cat((x,pad_zeros),dim=1) x = x.reshape(-1,self.group_size) reduce_shape = [-1] xmin = x.amin(reduce_shape, keepdim=True) xmax = x.amax(reduce_shape, keepdim=True) if self.lwc: xmax = self.sigmoid(self.upbound_factor)*xmax xmin = self.sigmoid(self.lowbound_factor)*xmin if self.symmetric: abs_max = torch.max(xmax.abs(),xmin.abs()) scale = abs_max / (2**(self.n_bits-1)-1) self.scale = scale.clamp(min=CLIPMIN, max=1e4) zero_point = (2**(self.n_bits-1)-1)*torch.ones_like(self.scale) else: range = xmax - xmin scale = range / (2**self.n_bits-1) self.scale = scale.clamp(min=CLIPMIN, max=1e4) zero_point = -(xmin) / (self.scale) if self.disable_zero_point: self.round_zero_point = None else: self.round_zero_point = zero_point.clamp(min=-1e4, max=1e4).round() def register_scales_and_zeros(self): self.register_buffer('scales', self.scale) self.register_buffer('zeros', self.round_zero_point) del self.scale del self.round_zero_point
最新发布
07-24
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值