LWC 66: 759. Employee Free Time

本文介绍了一种算法,用于计算一组员工的共同空闲时间段。通过将所有员工的工作时间区间合并,并找出这些区间之间的空闲时段。算法首先按区间的开始时间进行排序,然后寻找不重叠的时间段作为员工们的共同空闲时间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LWC 66: 759. Employee Free Time

传送门:759. Employee Free Time

Problem:

We are given a list schedule of employees, which represents the working time for each employee.

Each employee has a list of non-overlapping Intervals, and these intervals are in sorted order.

Return the list of finite intervals representing common, positive-length free time for all employees, also in sorted order.

Example 1:

Input: schedule = [[[1,2],[5,6]],[[1,3]],[[4,10]]]
Output: [[3,4]]
Explanation:
There are a total of three employees, and all common
free time intervals would be [-inf, 1], [3, 4], [10, inf].
We discard any intervals that contain inf as they aren’t finite.

Example 2:

Input: schedule = [[[1,3],[6,7]],[[2,4]],[[2,5],[9,12]]]
Output: [[5,6],[7,9]]
(Even though we are representing Intervals in the form [x, y], the objects inside are Intervals, not lists or arrays. For example, schedule[0][0].start = 1, schedule[0][0].end = 2, and schedule[0][0][0] is not defined.)

Also, we wouldn’t include intervals like [5, 5] in our answer, as they have zero length.

Note:

  • schedule and schedule[i] are lists with lengths in range [1, 50].
  • 0 <= schedule[i].start < schedule[i].end <= 10^8.

思路:
大致题意是求所有区间的并集的补集。先根据区间的start排序,假设当前区间为now,那么如果新来的区间start在now区间表示的范围内,说明两个区间存在交集,更新右边界,直到不存在交集时,能够求得第一个补集,依此类推。

Java版本:

    class P implements Comparable<P>{
        int start;
        int end;

        P(int start, int end){
            this.start = start;
            this.end   = end;
        }

        @Override
        public int compareTo(P o) {
            return this.start == o.start ? this.end - o.end : this.start - o.start;
        }

        @Override
        public String toString() {
            return "[" + start + ", " + end + "]";
        }
    }

    public List<Interval> employeeFreeTime(List<List<Interval>> avails) {
        List<P> unSorted = new ArrayList<>();
        for (List<Interval> avail : avails) {
            for (Interval inter : avail) {
                unSorted.add(new P(inter.start, inter.end));
            }
        }
        Collections.sort(unSorted);
        List<Interval> ans = new ArrayList<>();
        int n = unSorted.size();
        for (int i = 0; i < n; ++i) {
            P now = unSorted.get(i);
            int maxRight = now.end;
            i ++;
            while (i < n && unSorted.get(i).start <= maxRight) {
                maxRight = Math.max(maxRight, unSorted.get(i).end);
                i ++;
            }
            if (i < n) ans.add(new Interval(maxRight, unSorted.get(i).start));
            i --;
        }
        return ans;
    }

Python版本:

# Definition for an interval.
# class Interval(object):
#     def __init__(self, s=0, e=0):
#         self.start = s
#         self.end = e

class Solution(object):
    def employeeFreeTime(self, avails):
        """
        :type schedule: List[List[Interval]]
        :rtype: List[Interval]
        """
        from itertools import chain
        avails = list(sorted(chain(*avails), key = lambda Interval : Interval.start))
        ans = list()
        n = len(avails)
        i = 0
        while (i < n):
            now = avails[i]
            maxRight = now.end
            j = i + 1
            while (j < n and avails[j].start <= maxRight):
                maxRight = max(maxRight, avails[j].end)
                j += 1
            i = j - 1
            if j < n: ans.append(Interval(maxRight, avails[j].start))
            i += 1
        return ans
class UniformAffineQuantizer(nn.Module): def __init__( self, n_bits: int = 8, symmetric: bool = False, per_channel_axes=[], metric="minmax", dynamic=False, dynamic_method="per_cluster", group_size=None, shape=None, lwc=False, disable_zero_point=False, ): """ support cluster quantize dynamic_method support per_token and per_cluster """ super().__init__() self.symmetric = symmetric self.disable_zero_point = disable_zero_point assert 2 <= n_bits <= 16, "bitwidth not supported" self.n_bits = n_bits if self.disable_zero_point: self.qmin = -(2 ** (n_bits - 1)) self.qmax = 2 ** (n_bits - 1) - 1 else: self.qmin = 0 self.qmax = 2 ** (n_bits) - 1 self.per_channel_axes = per_channel_axes self.metric = metric self.cluster_counts = None self.cluster_dim = None self.scale = None self.zero_point = None self.round_zero_point = None self.cached_xmin = None self.cached_xmax = None self.dynamic = dynamic self.dynamic_method = dynamic_method self.deficiency = 0 self.lwc = lwc init_value = 4. # inti value of learnable weight clipping if lwc: if group_size: dim1 = int(shape[0]*math.ceil(shape[1]/group_size)) self.deficiency = shape[-1]%group_size if self.deficiency > 0: self.deficiency = group_size - self.deficiency assert self.symmetric # support for mlc-llm symmetric quantization else: dim1 = shape[0] self.upbound_factor = nn.Parameter(torch.ones((dim1,1))*init_value) self.lowbound_factor = nn.Parameter(torch.ones((dim1,1))*init_value) self.sigmoid = nn.Sigmoid() self.enable = True self.group_size = group_size def change_n_bits(self, n_bits): self.n_bits = n_bits if self.disable_zero_point: self.qmin = -(2 ** (n_bits - 1)) self.qmax = 2 ** (n_bits - 1) - 1 else: self.qmin = 0 self.qmax = 2 ** (n_bits) - 1 def fake_quant(self, x, scale, round_zero_point): if self.deficiency > 0: pad_zeros = torch.zeros((x.shape[0],self.deficiency),dtype=x.dtype,device=x.device) x = torch.cat((x,pad_zeros),dim=1) if self.group_size: assert len(x.shape)==2, "only support linear layer now" dim1, dim2 = x.shape x = x.reshape(-1, self.group_size) x_int = round_ste(x / scale) if round_zero_point is not None: x_int = x_int.add(round_zero_point) x_int = x_int.clamp(self.qmin, self.qmax) x_dequant = x_int if round_zero_point is not None: x_dequant = x_dequant.sub(round_zero_point) x_dequant = x_dequant.mul(scale) if self.group_size: x_dequant = x_dequant.reshape(dim1, dim2) if self.deficiency > 0: x_dequant = x_dequant[:,:-self.deficiency] return x_dequant def forward(self, x: torch.Tensor): if self.n_bits >= 16 or not self.enable: return x if self.metric == "fix0to1": return x.mul_(2**self.n_bits-1).round_().div_(2**self.n_bits-1) if self.dynamic_method == "per_token" or self.dynamic_method == "per_channel": self.per_token_dynamic_calibration(x) else: raise NotImplementedError() x_dequant = self.fake_quant(x, self.scale, self.round_zero_point) return x_dequant def per_token_dynamic_calibration(self, x): if self.group_size: if self.deficiency == 0: x = x.reshape(-1,self.group_size) else: pad_zeros = torch.zeros((x.shape[0],self.deficiency),dtype=x.dtype,device=x.device) x = torch.cat((x,pad_zeros),dim=1) x = x.reshape(-1,self.group_size) reduce_shape = [-1] xmin = x.amin(reduce_shape, keepdim=True) xmax = x.amax(reduce_shape, keepdim=True) if self.lwc: xmax = self.sigmoid(self.upbound_factor)*xmax xmin = self.sigmoid(self.lowbound_factor)*xmin if self.symmetric: abs_max = torch.max(xmax.abs(),xmin.abs()) scale = abs_max / (2**(self.n_bits-1)-1) self.scale = scale.clamp(min=CLIPMIN, max=1e4) zero_point = (2**(self.n_bits-1)-1)*torch.ones_like(self.scale) else: range = xmax - xmin scale = range / (2**self.n_bits-1) self.scale = scale.clamp(min=CLIPMIN, max=1e4) zero_point = -(xmin) / (self.scale) if self.disable_zero_point: self.round_zero_point = None else: self.round_zero_point = zero_point.clamp(min=-1e4, max=1e4).round() def register_scales_and_zeros(self): self.register_buffer('scales', self.scale) self.register_buffer('zeros', self.round_zero_point) del self.scale del self.round_zero_point
07-24
内容概要:本文档详细介绍了基于MATLAB实现多目标差分进化(MODE)算法进行无人机三维路径规划的项目实例。项目旨在提升无人机在复杂三维环境中路径规划的精度、实时性、多目标协调处理能力、障碍物避让能力和路径平滑性。通过引入多目标差分进化算法,项目解决了传统路径规划算法在动态环境和多目标优化中的不足,实现了路径长度、飞行安全距离、能耗等多个目标的协调优化。文档涵盖了环境建模、路径编码、多目标优化策略、障碍物检测与避让、路径平滑处理等关键技术模块,并提供了部分MATLAB代码示例。 适合人群:具备一定编程基础,对无人机路径规划和多目标优化算法感兴趣的科研人员、工程师和研究生。 使用场景及目标:①适用于无人机在军事侦察、环境监测、灾害救援、物流运输、城市管理等领域的三维路径规划;②通过多目标差分进化算法,优化路径长度、飞行安全距离、能耗等多目标,提升无人机任务执行效率和安全性;③解决动态环境变化、实时路径调整和复杂障碍物避让等问题。 其他说明:项目采用模块化设计,便于集成不同的优化目标和动态环境因素,支持后续算法升级与功能扩展。通过系统实现和仿真实验验证,项目不仅提升了理论研究的实用价值,还为无人机智能自主飞行提供了技术基础。文档提供了详细的代码示例,有助于读者深入理解和实践该项目。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值