题目:
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______3______
/ \
___5__ ___1__
/ \ / \
6 _2 0 8
/ \
7 4
For example, the lowest common ancestor (LCA) of nodes 5 and 1 is 3. Another example is LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition.
题意:
给定一棵二叉树,查找两个节点的最近祖先节点。
思路:
首先找出从根节点到这两个节点的路径,然后从根节点往下走,到达两个节点最后一个相同的位置就是其最近的祖先节点。
代码如下:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution
{
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q)
{
if(root == NULL || p == NULL || q == NULL) return NULL;
vector<TreeNode*> pv, qv;
if(!(getPath(root, p, pv) && getPath(root, q, qv)))return NULL;
return getCommonAncestor(pv, qv);
}
bool getPath(TreeNode* root, TreeNode* p, vector<TreeNode*>& elements)
{
elements.push_back(root);
if(root == p)
{
return true;
}
if(root->left != NULL)
{
if(getPath(root->left, p, elements))return true;
}
if(root->right != NULL)
{
if(getPath(root->right, p, elements))return true;
}
elements.pop_back();
return false;
}
TreeNode* getCommonAncestor(vector<TreeNode*> pv, vector<TreeNode*> qv)
{
TreeNode* last = NULL;
int index = 0;
int sp = pv.size();
int sq = qv.size();
while(index < sp && index < sq && pv[index] == qv[index])
{
last = pv[index];
index++;
}
return last;
}
};