现在在作3D的东西,得到左右两个视角的图,但不知道怎么来判断效果,不知道哪个结果更好,怎么办?现在整理了些方法,备份在此,供大家分享和讨论。
1.Red-Cyan anaglyph
没有眼镜也没有关系,看视觉的一致性,视觉不一致,会带来retinal rivalry,我是这么理解的吧,如果object A在左视角出现,不在右视角出现,或者虽然都出现,但是二者形状改变等,左右眼融合得到3D时,就会很不舒服。
具体的话,看红绿色块的重叠情况。
1) vertical disparity,vertical disparity会带来3D fatigue(看3D会有明显的疲劳感).
比如:
2)monocular object violation,就是有可能object只在一个视角出现
上面2组对比,显然,Oure Result要比Baseline result好!
Code:
import cv
SHIFT=8
if __name__ == '__main__':
import sys
_, fname = sys.argv
im = cv.LoadImage(fname)
size = cv.GetSize(im)
width, height = size
left = cv.CreateImage(size, im.depth, im.nChannels)
right = cv.CreateImage(size, im.depth, im.nChannels)
anaglyph = cv.CreateImage((width - SHIFT, height), im.depth, im.nChannels)
#
# This would be easier if we had COI support for cv.Set, but it doesn't
# work that way.
# OpenCV uses BGR order (even if input image is greyscale):
# http://www.cs.iit.edu/~agam/cs512/lect-notes/opencv-intro/opencv-intro.html
# red goes on the left, cyan on the right:
# http://en.wikipedia.org/wiki/Anaglyph_image
#
b = cv.CreateImage(size, im.depth, 1)
g = cv.CreateImage(size, im.depth, 1)
r = cv.CreateImage(size, im.depth, 1)
cv.Split(im, b, g, r, None)
zeros = cv.CreateImage(size, r.depth, 1)
cv.Merge(zeros, zeros, r, None, left)
cv.Merge(b, g, zeros, None, right)
#
# cvRect is ( x, y, width, height ) and it MUST be a tuple, not a list
#
cv.SetImageROI(left, ( SHIFT, 0, width - SHIFT, height ))
cv.SetImageROI(right, ( 0, 0, width - SHIFT, height ))
cv.Add(left, right, anaglyph, None)
cv.SaveImage('anaglyph.jpeg', anaglyph)
结果验证:
好啦,先更新到这里,以后有方法,在补充~