Hduoj1535【SPFA】

本文介绍了一种使用SPFA算法解决复杂公交系统中志愿者往返费用最小化问题的方法。在一个包含多个站点的单向线路系统中,通过两次应用SPFA算法,分别计算从中央检查站到各站点及返回的最短路径,进而得出最低总成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

/*Invitation Cards
Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2921    Accepted Submission(s): 1367


Problem Description
In the age of television, not many people attend theater performances. Antique Comedians of Malidinesia are aware of this fact. They want to propagate theater and, most of all, Antique Comedies. They have printed invitation cards with all the necessary information and with the programme. A lot of students were hired to distribute these invitations among the people. Each student volunteer has assigned exactly one bus stop and he or she stays there the whole day and gives invitation to people travelling by bus. A special course was taken where students learned how to influence people and what is the difference between influencing and robbery. 
The transport system is very special: all lines are unidirectional and connect exactly two stops. Buses leave the originating stop with passangers each half an hour. After reaching the destination stop they return empty to the originating stop, where they wait until the next full half an hour, e.g. X:00 or X:30, where 'X' denotes the hour. The fee for transport between two stops is given by special tables and is payable on the spot. The lines are planned in such a way, that each round trip (i.e. a journey starting and finishing at the same stop) passes through a Central Checkpoint Stop (CCS) where each passenger has to pass a thorough check including body scan. 

All the ACM student members leave the CCS each morning. Each volunteer is to move to one predetermined stop to invite passengers. There are as many volunteers as stops. At the end of the day, all students travel back to CCS. You are to write a computer program that helps ACM to minimize the amount of money to pay every day for the transport of their employees. 


 

Input
The input consists of N cases. The first line of the input contains only positive integer N. Then follow the cases. Each case begins with a line containing exactly two integers P and Q, 1 <= P,Q <= 1000000. P is the number of stops including CCS and Q the number of bus lines. Then there are Q lines, each describing one bus line. Each of the lines contains exactly three numbers - the originating stop, the destination stop and the price. The CCS is designated by number 1. Prices are positive integers the sum of which is smaller than 1000000000. You can also assume it is always possible to get from any stop to any other stop. 

 

Output
For each case, print one line containing the minimum amount of money to be paid each day by ACM for the travel costs of its volunteers. 

 

Sample Input
2
2 2
1 2 13
2 1 33
4 6
1 2 10
2 1 60
1 3 20
3 4 10
2 4 5
4 1 50
 

Sample Output
46
210
 

Source
Central Europe 1998 
*/ 
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#define INF 99999999
int N, n, m;
int first[1000010],next[1000010], que[1000010],d[1000010];
bool vis[1000010];
struct road
{
	int u, v, w;
}R[1000010];

void spfa()
{
	for(int i = 0; i <= n; ++i)
	d[i] = INF;
	d[1] = 0;
	int front = 0, rear = 0;
	que[rear++] = 1;
	memset(vis, 0, sizeof(vis));
	while(front < rear)
	{
		int u = que[front++];
		vis[u] = false;//出队 
		//从该结点引出的最后一条边开始  
		for(int k = first[u]; k != -1; k = next[k])
		{
			int v = R[k].v;
			if(d[v] > d[u] + R[k].w)//更新最短距离 
			{
				d[v] = d[u] + R[k].w; 
				if(!vis[v])     //将更新的点加入队列以便后继更新  
				{
					que[rear++] = v;
					vis[v] = true;
				}
			}
		}
	}
}

//逆向构图 
void rebuild()
{
	memset(first, -1, sizeof(first));
	memset(next, -1, sizeof(next));
	for(int i = 0; i < m; ++i)
	{
		int v = R[i].v;
		R[i].v = R[i].u;
		R[i].u = v;
		next[i] = first[v];
		first[v] = i;
	}
} 

int main()
{
	int i, j, k, ans;
	scanf("%d", &N);
	while(N--)
	{
		memset(first, -1, sizeof(first));
		memset(next, -1, sizeof(next));
		scanf("%d%d", &n, &m);
		for(i = 0; i < m; ++i)
		{
			//保存 u结点所引出的边的编号 
			scanf("%d%d%d", &R[i].u, &R[i].v, &R[i].w);
			next[i] = first[R[i].u];//刚开始为-1即没有  否则将保存u结点在本次出度边之前的最后一条出度边的编号 下面更新保存本次出度边 
			first[R[i].u] = i;//first保存的是u结点的最后一条出度边 
		}
		ans = 0;
		spfa();
		for(i = 2; i <= n; ++i)
		ans += d[i];
		rebuild();
		spfa(); 
		for(i = 2; i <= n; ++i)
		ans += d[i];
		printf("%d\n", ans);
	}
	return 0;
}


题意:有n个汽车站,每个车站都需要一个学生站岗,每个学生都从1号车站出发到达其他汽车站,然后再从相应的汽车站返回1号汽车站,每个车站到达其他车站都有相应的路线和路费,现在要求计算学生们所需的最小的资金。

思路:这里有2个最小的路径,一个是1号车站到其他车站的最小路径,一个是其他车站到1号车站的最小路径,然而2个车站之间来回的消费是不同的,所以要进行2次的spfa算法,其中一次需要对图的路径进行反向构图并交换车站,再用spfa即可求出第二种路径的消费。这里最难的便是构图,由于百万的数据量所以无法用邻接表来保存两两之间的费用,然而这里的边却最多只有一百万条,我们可以根据边来统计车站到车站之间的距离(具体可以看代码理解)。

内容概要:本文针对国内加密货币市场预测研究较少的现状,采用BP神经网络构建了CCi30指数预测模型。研究选取2018年3月1日至2019年3月26日共391天的数据作为样本,通过“试凑法”确定最优隐结点数目,建立三层BP神经网络模型对CCi30指数收盘价进行预测。论文详细介绍了数据预处理、模型构建、训练及评估过程,包括数据归一化、特征工程、模型架构设计(如输入层、隐藏层、输出层)、模型编译与训练、模型评估(如RMSE、MAE计算)以及结果可视化。研究表明,该模型在短期内能较准确地预测指数变化趋势。此外,文章还讨论了隐层节点数的优化方法及其对预测性能的影响,并提出了若干改进建议,如引入更多技术指标、优化模型架构、尝试其他时序模型等。 适合人群:对加密货币市场预测感兴趣的研究人员、投资者及具备一定编程基础的数据分析师。 使用场景及目标:①为加密货币市场投资者提供一种新的预测工具和方法;②帮助研究人员理解BP神经网络在时间序列预测中的应用;③为后续研究提供改进方向,如数据增强、模型优化、特征工程等。 其他说明:尽管该模型在短期内表现出良好的预测性能,但仍存在一定局限性,如样本量较小、未考虑外部因素影响等。因此,在实际应用中需谨慎对待模型预测结果,并结合其他分析工具共同决策。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值