The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x (mod m)
.
This is equivalent to ax≡1 (mod m)
.
Input
There are multiple test cases. The first line of input is an integer T ≈ 2000 indicating the number of test cases.
Each test case contains two integers 0 < a ≤ 1000 and 0 < m ≤ 1000.
Output
For each test case, output the smallest positive x. If such x doesn't exist, output "Not Exist".
Sample Input
3 3 11 4 12 5 13
Sample Output
4 Not Exist 8
#include <stdio.h>
#include <iostream>
#include <math.h>
#include <stdlib.h>
#include <string.h>
using namespace std;
int exgcd(int a,int b,int &x,int &y)
{
if (b==0)
{
x=1;
y=0;
return a;
}
int ans=exgcd(b, a%b, x, y);
int temp=x;
x=y;
y=temp-a/b*y;
return ans;
}
int cal(int a,int b,int c)
{
int x,y;
int gcd=exgcd(a, b, x, y);
if(c%gcd!=0)
{
return -1;
}
x*=c/gcd;
b/=gcd;
if (b<0)
{
b=-b;
}
int ans=x%b;
if (ans<=0)
{
ans+=b;
}
return ans;
}
int main()
{
int a,b;
int t;
scanf("%d",&t);
while (t--)
{
scanf("%d%d",&a,&b);
int ans=cal(a, b,1);
if(ans==-1)
{
printf("Not Exist\n");
}
else
{
printf("%d\n",ans);
}
}
return 0;
}