训练数据,验证数据和测试数据的概念(转)

本文深入探讨了Mahout推荐系统评估中训练数据、验证数据与测试数据的区别与作用,解释了如何在构建模型时合理使用这三类数据,以避免过度拟合并确保模型的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

看mahout推荐系统的评估时碰到训练数据跟测试数据的概念,网上查到的概念如下:


训练数据,验证数据和测试数据


一般做预测分析时,会将数据分为两大部分。一部分是训练数据,用于构建模型,一部分是测试数据,用于检验模型。但是,有时候模型的构建过程中也需要检验模型,辅助模型构建,所以会将训练数据在分为两个部分:1)训练数据;2)验证数据(Validation Data)。验证数据用于负责模型的构建。典型的例子是用K-Fold Cross Validation裁剪决策树,求出最优叶节点数,防止过渡拟合(Overfitting)。下面形式的描述一下前面提到的3类数据:



训练数据(Test Data):用于模型构建
验证数据(Validation Data):可选,用于辅助模型构建,可以重复使用。
测试数据(Test Data):用于检测模型构建,此数据只在模型检验时使用,用于评估模型的准确率。绝对不允许用于模型构建过程,否则会导致过渡拟合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值