你有m种面值的硬币,分别为
你去摘n个樱桃,每个樱桃都有
你要要用你的硬币把你摘了的樱桃给买下来,每个樱桃需要1元钱,但是不能找钱。
问最好的情况下你期望要多花多少钱。
答案对10^9+7取模。
dls实在是太强啦
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#define cl(x) memset(x,0,sizeof(x))
using namespace std;
typedef long long ll;
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline void read(int &x){
char c=nc(),b=1;
for (;!(c>='0' && c<='9');c=nc()) if (c=='-') b=-1;
for (x=0;c>='0' && c<='9';x=x*10+c-'0',c=nc()); x*=b;
}
const int MAX=20000;
const int N=105;
const int P=1e9+7;
int C;
namespace MMP{
const int P=1e9+7;
const int M[]={998244353,1004535809,469762049};
const int G[]={3,3,3};
const ll _M=(ll)M[0]*M[1];
inline ll Pow(ll a,int b,int p){
ll ret=1; for (;b;b>>=1,a=a*a%p) if (b&1) ret=ret*a%p; return ret;
}
inline ll mul(ll a,ll b,ll p){
a%=p; b%=p; return ((a*b-(ll)((ll)((long double)a/p*b+1e-3)*p))%p+p)%p;
}
const int m1=M[0],m2=M[1],m3=M[2];
const int inv1=Pow(m1%m2,m2-2,m2),inv2=Pow(m2%m1,m1-2,m1),inv12=Pow(_M%m3,m3-2,m3);
inline int CRT(int a1,int a2,int a3){
ll A=(mul((ll)a1*m2%_M,inv2,_M)+mul((ll)a2*m1%_M,inv1,_M))%_M;
ll k=((ll)a3+m3-A%m3)*inv12%m3;
return (k*(_M%P)+A)%P;
}
const int N=100005;
struct NTT{
int P,G;
int num,w[2][N];
int R[N];
void Pre(int _P,int _G,int m){
num=m; P=_P; G=_G;
int g=Pow(G,(P-1)/num,P);
w[1][0]=1; for (int i=1;i<num;i++) w[1][i]=(ll)w[1][i-1]*g%P;
w[0][0]=1; for (int i=1;i<num;i++) w[0][i]=w[1][num-i];
int L=0; while (m>>=1) L++;
for (int i=1;i<=num;i++) R[i]=(R[i>>1]>>1)|((i&1)<<(L-1));
}
void FFT(int *a,int n,int r){
for (int i=0;i<n;i++) if (i<R[i]) swap(a[i],a[R[i]]);
for (int i=1;i<n;i<<=1)
for (int j=0;j<n;j+=(i<<1))
for (int k=0;k<i;k++){
int x=a[j+k],y=(ll)a[j+i+k]*w[r][num/(i<<1)*k]%P;
a[j+k]=(x+y)%P; a[j+i+k]=(x+P-y)%P;
}
if (!r) for (int i=0,inv=Pow(n,P-2,P);i<n;i++) a[i]=(ll)a[i]*inv%P;
}
}ntt[3];
int n,m;
inline void Init(int _n){
n=_n;
for (m=1;m<=2*(n-1);m<<=1);
for (int i=0;i<3;i++) ntt[i].Pre(M[i],G[i],m);
}
int _a[3][N],C[N],D[N],A[N],B[N];
struct Poly{
int a[N];
Poly() { cl(a); }
int& operator [] (const int x) { return a[x]; }
Poly& operator *=(const Poly &B){
for (int i=0;i<3;i++){
memcpy(C,a,sizeof(int)*(m+5)); memcpy(D,B.a,sizeof(int)*(m+5));
ntt[i].FFT(C,m,1); ntt[i].FFT(D,m,1);
for (int j=0;j<m;j++) C[j]=(ll)C[j]*D[j]%ntt[i].P;
ntt[i].FFT(C,m,0);
for (int j=0;j<m;j++) _a[i][j]=C[j];
}
for (int i=0;i<(::C);i++) a[i]=0;
for (int i=0;i<m;i++) (a[i%(::C)]+=CRT(_a[0][i],_a[1][i],_a[2][i]))%=P;
}
friend Poly Pow(Poly a,ll b){
Poly ret; ret[0]=1;
for (;b;b>>=1,a*=a)
if (b&1)
ret*=a;
return ret;
}
};
}
ll inv[MAX+5];
inline void Pre(int n){
inv[1]=1; for (int i=2;i<=n;i++) inv[i]=(ll)(P-P/i)*inv[P%i]%P;
}
inline ll Pow(ll a,int b){
ll ret=1; for (;b;b>>=1,a=a*a%P) if (b&1) ret=ret*a%P; return ret;
}
struct PP{
int a[N];
PP(){ cl(a); }
int &operator [](int x){ return a[x]; }
friend PP operator * (PP &A,PP &B){
PP ret;
for (int i=0;i<C;i++)
for (int j=0;j<C;j++)
(ret[(i+j)%C]+=(ll)A[i]*B[j]%P)%=P;
return ret;
}
friend PP Pow(PP a,int b){
PP ret; ret[0]=1;
for (;b;b>>=1,a=a*a)
if (b&1)
ret=ret*a;
return ret;
}
};
int n,m,p,K;
int c[N];
int cost[N],dis[N],vst[N];
int w[N][N];
inline void Dij(){
for (int i=0;i<C;i++) dis[i]=1<<29,vst[i]=0;
dis[0]=0;
for (int i=1;i<C;i++){
int k=-1;
for (int j=0;j<C;j++)
if (!vst[j] && (k==-1 || dis[j]<dis[k]))
k=j;
vst[k]=1;
for (int j=0;j<C;j++)
dis[j]=min(dis[j],dis[k]+w[k][j]);
}
}
ll Ans,CC[MAX+5];
int tag[MAX+5],Cost[MAX+5];
inline void Calc(int K){
ll t=1; CC[0]=t*Pow(100-::p,n)%P;
for (int i=1;i<=K;i++){
t=t*(n-i+1)%P*inv[i]%P;
CC[i]=t*Pow(100-::p,n-i)%P*Pow(::p,i)%P;
}
cl(tag); int m=(K/C+1)*C;
for (int i=0;i<C;i++)
for (int j=dis[i];j<=m;j+=C)
tag[j]=1;
int last;
for (int i=m;~i;i--){
if (tag[i]) last=i;
Cost[i]=last-i;
}
}
int main(){
freopen("t.in","r",stdin);
freopen("t.out","w",stdout);
int T,Case=0;
read(T); Pre(MAX);
while (T--){
read(n); read(m); read(p);
for (int i=1;i<=m;i++) read(c[i]);
sort(c+1,c+m+1);
C=c[1];
if (m==1 && C>100){
MMP::Init(C);
MMP::Poly a; a[0]=100-p,a[1]=p;
a=Pow(a,n);
Ans=0;
for (int i=0;i<C;i++)
Ans+=(ll)a[i]*((C-i)%C)%P;
printf("Case #%d: %I64d\n",++Case,Ans%P);
continue;
}
K=c[m];
for (int i=1;i<=m;i++) for (int j=i+1;j<=m;j++) K=max(K,c[i]*c[j]);
K=min(K,n);
for (int i=0;i<C;i++) for (int j=0;j<C;j++) w[i][j]=i==j?0:1<<29;
for (int i=2;i<=m;i++)
for (int j=0;j<C;j++)
w[j][(j+c[i])%C]=min(w[j][(j+c[i])%C],c[i]);
Dij();
for (int i=0;i<C;i++){
int t=i; while (t<C && dis[t]==1<<29) t++;
cost[i]=t-i;
}
PP a; a[0]=100-p,a[1]=p;
a=Pow(a,n);
Ans=0;
for (int i=0;i<C;i++)
Ans+=(ll)cost[i]*a[i]%P;
Calc(K);
for (int i=0;i<=K;i++)
Ans+=(ll)CC[i]*(Cost[i]+P-cost[i%C])%P;
printf("Case #%d: %I64d\n",++Case,Ans%P);
}
return 0;
}