计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定类型变量的时候经常在特 定的内存地址访问,这就需要各种类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就是对齐。
内存对齐的原因:
1)某些平台只能在特定的地址处访问特定类型的数据;
2)提高存取数据的速度。比如有的平台每次都是从偶地址处读取数据,对于一个int型的变量,若从偶地址单元处存放,则只需一个读取周期即可读取该变量;但是若从奇地址单元处存放,则需要2个读取周期读取该变量。
比如要计算如下两个类(结构体)的size:
class A
{
int a;
short b;
int c;
char d;
};
class B
{
double a;
short b;
int c;
char d;
};
在32位机器上用gcc编译以上代码,求sizeof(A),sizeof(B)分别是多少。
一般编译器对齐策略:
1、 结构体的大小等于结构体内最大成员大小的整数倍
2、 结构体内的成员的首地址相对于结构体首地址的偏移量是其类型大小的整数倍,比如说double型成员相对于结构体的首地址的地址偏移量应该是8的倍数。
3、 为了满足规则1和2编译器会在结构体成员之后进行字节填充!
A中,a占4个字节,b本应占2个字节,但由于c占4个字节,为了满足条件2,b多占用2个字节,为了满足条件1,d占用4个字节,一共16个字节。
B中,a占8个字节,b占2个字节,但由于c占4个字节,为了满足条件2,b多占用2个字节,
即abc共占用8+4+4=16个字节,
为了满足条件1,d将占用8个字节,一共24个字节。
上面是按照编译器的默认设置进行对齐的结果,我们也可以改变编译器的这种默认对齐设置。
#pragma pack (value)
设结构体如下定义:
struct A
{
int a;
char b;
short c;
};
struct B
{
char b;
int a;
short c;
};
现在已知32位机器上各种数据类型的长度如下:
char:1(有符号无符号同)
short:2(有符号无符号同)
int:4(有符号无符号同)
long:4(有符号无符号同)
float:4 double:8
那么上面两个结构大小如何呢?
默认下结果是:
sizeof(strcut A)值为8
sizeof(struct B)的值却是12
现在修改对齐字节
#pragma pack (2) /*指定按2字节对齐*/
struct C
{
char b;
int a;
short c;
};
#pragma pack () /*取消指定对齐,恢复缺省对齐*/
sizeof(struct C)值是8。
修改对齐值为1:
#pragma pack (1) /*指定按1字节对齐*/
struct D
{
char b;
int a;
short c;
};
#pragma pack () /*取消指定对齐,恢复缺省对齐*/
sizeof(struct D)值为7。