hdu 2586 How far away?(LCA离线Tarjan算法)

本文介绍了一种使用LCA算法解决树上两点间距离问题的方法。通过构建邻接表表示树结构,并采用Tarjan算法求解最近公共祖先(LCA),进而计算两点间距离。文章提供了完整的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

看了很多天的LCA,一直没弄明白,原因是没有注意邻接表建图……

题意:给定一棵树,每条边都有一定的权值,q次询问,每次询问某两点间的距离。这样就可以用LCA来解,首先找到u, v 两点的lca,然后计算一下距离值就可以了。这里的计算方法是,记下根结点到任意一点的距离dis[],这样ans = dis[u] + dis[v] - 2 * dis[lca(v, v)]

参考博客:

http://www.cnblogs.com/ylfdrib/archive/2010/11/03/1867901.html#3305330

#include <iostream>
#include <string.h>
#include <stdio.h>
#define NN 40002 // number of house
#define MM 202   // number of query
using namespace std;

typedef struct node{
    int v;
    int d;
    struct node *nxt;
}NODE;

NODE *Link1[NN];
NODE edg1[NN * 2]; // 树中的边

NODE *Link2[NN];
NODE edg2[NN * 2]; // 询问的点对

int idx1, idx2, N, M;
int res[MM][3]; // 记录结果,res[i][0]: u   res[i][1]: v  res[i][2]: lca(u, v)
int fat[NN];
int vis[NN];
int dis[NN];

void Add(int u, int v, int d, NODE edg[], NODE *Link[], int &idx){//头插法建立邻接表
    edg[idx].v = v;
    edg[idx].d = d;
    edg[idx].nxt = Link[u];
    Link[u] = edg + idx++;

    edg[idx].v = u;
    edg[idx].d = d;
    edg[idx].nxt = Link[v];
    Link[v] = edg + idx++;
}

int find(int x){ // 并查集路径压缩
    if(x != fat[x]){
        return fat[x] = find(fat[x]);
    }
    return x;
}

void Tarjan(int u){
    vis[u] = 1;
    fat[u] = u;

    for (NODE *p = Link2[u]; p; p = p->nxt){
        if(vis[p->v]){
            res[p->d][2] = find(p->v); // 存的是最近公共祖先结点
        }
    }

    for (NODE *p = Link1[u]; p; p = p->nxt){
        if(!vis[p->v]){
            dis[p->v] = dis[u] + p->d;
            Tarjan(p->v);
            fat[p->v] = u;
        }
    }
}
int main() {
    int T, i, u, v, d;
    scanf("%d", &T);
    while(T--){
        scanf("%d%d", &N, &M);

        idx1 = 0;
        memset(Link1, 0, sizeof(Link1));
        for (i = 1; i < N; i++){
            scanf("%d%d%d", &u, &v, &d);
            Add(u, v, d, edg1, Link1, idx1);
        }

        idx2 = 0;
        memset(Link2, 0, sizeof(Link2));
        for (i = 1; i <= M; i++){
            scanf("%d%d", &u, &v);
            Add(u, v, i, edg2, Link2, idx2);
            res[i][0] = u;
            res[i][1] = v;
        }

        memset(vis, 0, sizeof(vis));
        dis[1] = 0;
        Tarjan(1);

        for (i = 1; i <= M; i++){
            printf("%d\n", dis[res[i][0]] + dis[res[i][1]] - 2 * dis[res[i][2]]);
        }
    }
    return 0;
}
内容概要:本文详细介绍了扫描单分子定位显微镜(scanSMLM)技术及其在三维超分辨体积成像中的应用。scanSMLM通过电调透镜(ETL)实现快速轴向扫描,结合4f检测系统将不同焦平面的荧光信号聚焦到固定成像面,从而实现快速、大视场的三维超分辨成像。文章不仅涵盖了系统硬件的设计与实现,还提供了详细的软件代码实现,包括ETL控制、3D样本模拟、体积扫描、单分子定位、3D重建和分子聚类分析等功能。此外,文章还比较了循环扫描与常规扫描模式,展示了前者在光漂白效应上的优势,并通过荧光珠校准、肌动蛋白丝、线粒体网络和流感A病毒血凝素(HA)蛋白聚类的三维成像实验,验证了系统的性能和应用潜力。最后,文章深入探讨了HA蛋白聚类与病毒感染的关系,模拟了24小时内HA聚类的动态变化,提供了从分子到细胞尺度的多尺度分析能力。 适合人群:具备生物学、物理学或工程学背景,对超分辨显微成像技术感兴趣的科研人员,尤其是从事细胞生物学、病毒学或光学成像研究的科学家和技术人员。 使用场景及目标:①理解和掌握scanSMLM技术的工作原理及其在三维超分辨成像中的应用;②学习如何通过Python代码实现完整的scanSMLM系统,包括硬件控制、图像采集、3D重建和数据分析;③应用于单分子水平研究细胞内结构和动态过程,如病毒入侵机制、蛋白质聚类等。 其他说明:本文提供的代码不仅实现了scanSMLM系统的完整工作流程,还涵盖了多种超分辨成像技术的模拟和比较,如STED、GSDIM等。此外,文章还强调了系统在硬件改动小、成像速度快等方面的优势,为研究人员提供了从理论到实践的全面指导。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值