unity看向并clamp size

using System;
using UnityEngine;
using UnityEngine.Serialization;

[ExecuteInEditMode]
public class ParticleSystemMeshRender : MonoBehaviour
{
    [Header("BillBoard")]
    public Vector3 startRotation;
    public Vector3 rotationSpeed;//TODO曲线
    public RenderAlignment renderAlignment;
    public enum RenderAlignment
    {
        View, World, //Local
    }
    private Quaternion _origRotation;
    private Vector3 _currentSpeedRotation;
    
    [Header("Size")]
    public float minSize = 0f;
    public float maxSize = 0.5f;
    public Vector3 origScale = Vector3.one;
    
    public bool outCam;
    public float viewWidthRatio;
    public float viewHeightRatio;
    public float viewRatio;
    public float screenRadio;
    public float afterPercentage;
    public float sizeScale;

    private Renderer rend;
    private Camera cam;
    
    private void Start()
    {
        cam = Camera.main;
        rend = GetComponent<Renderer>();
        origScale = transform.localScale;
    }

    private void Update()
    {
#if UNITY_EDITOR
        if (!Application.isPlaying)//编辑时一直能获取
        {
            if (rend == null)
                rend = GetComponent<Renderer>();
            if(cam == null)
                cam = Camera.main;
        }
#endif
        if(rend == null || cam == null)
            return;
        _UpdateBillBoard();
        _UpdateClampSize();
    }

    void _UpdateBillBoard()
    {
        //if (_origRotation != transform.rotation)
        //    _origRotation = transform.rotation;
        _currentSpeedRotation += rotationSpeed * Time.deltaTime;
        //if(renderAlignment == RenderAlignment.Local)
        //{
        //    startRotation = transform.eulerAngles;
        //}
        var rotation = Quaternion.identity;
        if (renderAlignment == RenderAlignment.View)
        {
            if (cam.transform != null)
                transform.forward = -cam.transform.forward;
            rotation = cam.transform.rotation;
        }
        else if(renderAlignment == RenderAlignment.World)
        {
            transform.forward = Vector3.forward;
        }
        //else if(renderAlignment == RenderAlignment.Local)
        //{
        //    transform.rotation = Quaternion.Euler(startRotation);
        //}
        var offset = _currentSpeedRotation + startRotation;
        transform.rotation = rotation * Quaternion.Euler(offset);
    }

    void _UpdateClampSize()
    {
        //还原大小
        transform.localScale = origScale;
        
        //获取bound位置
        Bounds bounds = rend.bounds;
        Vector3 viewPoint = cam.WorldToViewportPoint(bounds.center);
        //检查视口坐标是否在屏幕之外
        if (viewPoint.z < 0 || 1 < viewPoint.x || viewPoint.x < 0 || 1 < viewPoint.y || viewPoint.y < 0)
        {
            outCam = true;
            return;
        }

        outCam = false;
        var min = Vector3.Scale(bounds.min, transform.localScale);
        var max = Vector3.Scale(bounds.max, transform.localScale);
        //var min = transform.TransformPoint(bounds.min);
        //var max = transform.TransformPoint(bounds.max);
        Vector3 minPoint = cam.WorldToViewportPoint(new Vector3(min.x, min.y, min.z));
        Vector3 maxPoint = cam.WorldToViewportPoint(new Vector3(max.x, max.y, max.z));

        float width = viewRatio = viewWidthRatio = maxPoint.x - minPoint.x;
        float height = viewHeightRatio = maxPoint.y - minPoint.y;
        float modelArea = width * height;

        float screenWidth = Screen.width;
        float screenHeight = Screen.height;
        float screenArea = screenWidth * screenHeight;

        // 计算模型在屏幕上的占比
        screenRadio =  modelArea / screenArea;
        
        if (outCam || screenRadio <= 0)//镜头之外就不管,0缩放不管
        {
            return;
        }

        var calcRatio = viewRatio;
        // 如果模型的占比小于最小值,增大模型的大小
        if (calcRatio < minSize)
        { 
            sizeScale = minSize / calcRatio;
            transform.localScale = origScale *  (sizeScale);
        }
        // 如果模型的占比大于最大值,缩小模型的大小
        else if (calcRatio > maxSize)
        {
            sizeScale = maxSize / calcRatio;
            transform.localScale = origScale *  sizeScale;
        }
        bounds = rend.bounds;
        min = Vector3.Scale(bounds.min, transform.localScale);
        max = Vector3.Scale(bounds.max, transform.localScale);
        minPoint = cam.WorldToScreenPoint(new Vector3(min.x, min.y, min.z));
        maxPoint = cam.WorldToScreenPoint(new Vector3(max.x, max.y, max.z));
        width = maxPoint.x - minPoint.x;
        height = maxPoint.y - minPoint.y;
        modelArea = width * height;
        afterPercentage =  modelArea / screenArea;
    }

    private void OnDisable()
    {
        _currentSpeedRotation = Vector3.zero;
    }
}

#if UNITY_EDITOR

#endif

资源下载链接为: https://pan.quark.cn/s/f989b9092fc5 HttpServletRequestWrapper 是 Java Servlet API 中的一个工具类,位于 javax.servlet.http 包中,用于对 HttpServletRequest 对象进行封装,从而在 Web 应用中实现对 HTTP 请求的拦截、修改或增强等功能。通过继承该类覆盖相关方法,开发者可以轻松地自定义请求处理逻辑,例如修改请求参数、添加请求头、记录日志等。 参数过滤:在请求到达处理器之前,可以对请求参数进行检查或修改,例如去除 URL 编码、过滤敏感信息或进行安全检查。 请求头操作:可以修改或添加请求头,比如设置自定义的 Content-Type 或添加认证信息。 请求属性扩展:在原始请求的基础上添加自定义属性,供后续处理使用。 日志记录:在处理请求前记录请求信息,如 URL、参数、请求头等,便于调试和监控。 跨域支持:通过添加 CORS 相关的响应头,允许来自不同源的请求。 HttpServletRequestWrapper 通过继承 HttpServletRequest 接口重写其方法来实现功能。开发者可以在重写的方法中添加自定义逻辑,例如在获取参数时进行过滤,或在读取请求体时进行解密。当调用这些方法时,实际上是调用了包装器中的方法,从而实现了对原始请求的修改或增强。 以下是一个简单的示例,展示如何创建一个用于过滤请求参数的包装器: 在 doFilter 方法中,可以使用 CustomRequestWrapper 包装原始请求: 这样,每当调用 getParameterValues 方法时,都会先经过自定义的过滤逻辑。 HttpServletRequestWrapper 是 Java Web 开发中一个强大的工具,它提供了灵活的扩展性,允许开发者
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值