蓝桥杯 历届试题 兰顿蚂蚁

本文介绍了一种基于兰顿蚂蚁规则的模拟程序,兰顿蚂蚁是一种简单的细胞自动机,其行为表现出从混沌到有序的转变特性。文章详细描述了兰顿蚂蚁的移动规则,并提供了一个编程实现的例子。
历届试题 兰顿蚂蚁  
时间限制:1.0s   内存限制:256.0MB
    
问题描述


  兰顿蚂蚁,是于1986年,由克里斯·兰顿提出来的,属于细胞自动机的一种。

  平面上的正方形格子被填上黑色或白色。在其中一格正方形内有一只“蚂蚁”。
  蚂蚁的头部朝向为:上下左右其中一方。

  蚂蚁的移动规则十分简单:
  若蚂蚁在黑格,右转90度,将该格改为白格,并向前移一格;
  若蚂蚁在白格,左转90度,将该格改为黑格,并向前移一格。

  规则虽然简单,蚂蚁的行为却十分复杂。刚刚开始时留下的路线都会有接近对称,像是会重复,但不论起始状态如何,蚂蚁经过漫长的混乱活动后,会开辟出一条规则的“高速公路”。

  蚂蚁的路线是很难事先预测的。

  你的任务是根据初始状态,用计算机模拟兰顿蚂蚁在第n步行走后所处的位置。
输入格式
  输入数据的第一行是 m n 两个整数(3 < m, n < 100),表示正方形格子的行数和列数。
  接下来是 m 行数据。
  每行数据为 n 个被空格分开的数字。0 表示白格,1 表示黑格。

  接下来是一行数据:x y s k, 其中x y为整数,表示蚂蚁所在行号和列号(行号从上到下增长,列号从左到右增长,都是从0开始编号)。s 是一个大写字母,表示蚂蚁头的朝向,我们约定:上下左右分别用:UDLR表示。k 表示蚂蚁走的步数。
输出格式
  输出数据为两个空格分开的整数 p q, 分别表示蚂蚁在k步后,所处格子的行号和列号。
样例输入
5 6
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
2 3 L 5
样例输出
1 3
样例输入
3 3
0 0 0
1 1 1
1 1 1
1 1 U 6
样例输出
0 0

细胞自动机归为四种类别,它们分别是:
I、 固定值型:细胞自动机经过若干步运算便停留在一个固定的状态;
II、 周期型:细胞自动机在几种状态之间周期循环;
III、 混沌型:细胞自动机处于一种完全无序随机的状态,几乎找不到任何规律;
IV、 复杂型:细胞自动机在运行的过程中可能产生复杂的结构,这种结构既不是完全的随机混乱,又没有固定的周期和状态。

这道题比较麻烦的一点在蚂蚁的头部朝的方向那一点得确定,方向确定下来之后再讨论各自的“上下左右”。

#include <iostream>
#include <memory.h>
#include <fstream>
using namespace std;
int a[110][110];
 int x,y,k;
 int cnt;
 char c;
void solve(int p,int q)
{
    if(cnt==k)
        cout<<p<<" "<<q<<endl;
    else
    {
        if(c=='U')
           {
               if(a[p][q])
               {
                    a[p][q]=!a[p][q];
                   c='R';
                   q++;
               }
               else
               { a[p][q]=!a[p][q];
                   c='L';
                   q--;
               }
           }
        else if(c=='D')
           {
                if(a[p][q])
               { a[p][q]=!a[p][q];
                   c='L';
                   q--;
               }
               else
               { a[p][q]=!a[p][q];
                   c='R';
                   q++;
               }
           }
        else if(c=='L')
           {
                if(a[p][q])
               { a[p][q]=!a[p][q];
                   c='U';
                   p--;
               }
               else
               { a[p][q]=!a[p][q];
                   c='D';
                   p++;
               }
           }
        else
           {if(a[p][q])
              {
                   a[p][q]=!a[p][q];
                   c='D';
                   p++;
              }
              else
              {
                   a[p][q]=!a[p][q];
                   c='U';
                   p--;
              }
           }

         cnt++;
         solve(p,q);
    }
}

int main(void)
{
   // fstream cin("input1.txt");
    int n,m;
    while(cin>>n>>m)
    {
      //  memset(a,0,sizeof(a));
        for(int i=0;i<n;i++)
        {
            for(int j=0;j<m;j++)
            {
                cin>>a[i][j];
            }
        }
        cin>>x>>y>>c>>k;
        cnt=0;
        solve(x,y);
    }

    return 0;
}

内容概要:本文详细介绍了一种基于Simulink的表贴式永磁同步电机(SPMSM)有限控制集模型预测电流控制(FCS-MPCC)仿真系统。通过构建PMSM数学模型、坐标变换、MPC控制器、SVPWM调制等模块,实现了对电机定子电流的高精度跟踪控制,具备快速动态响应和低稳态误差的特点。文中提供了完整的仿真建模步骤、关键参数设置、核心MATLAB函数代码及仿真结果分析,涵盖转速、电流、转矩和三相电流波形,验证了MPC控制策略在动态性能、稳态精度和抗负载扰动方面的优越性,并提出了参数自整定、加权代价函数、模型预测转矩控制和弱磁扩速等优化方向。; 适合人群:自动化、电气工程及其相关专业本科生、研究生,以及从事电机控制算法研究与仿真的工程技术人员;具备一定的电机原理、自动控制理论和Simulink仿真基础者更佳; 使用场景及目标:①用于永磁同步电机模型预测控制的教学演示、课程设计或毕业设计项目;②作为电机先进控制算法(如MPC、MPTC)的仿真验证平台;③支撑科研中对控制性能优化(如动态响应、抗干扰能力)的研究需求; 阅读建议:建议读者结合Simulink环境动手搭建模型,深入理解各模块间的信号流向与控制逻辑,重点掌握预测模型构建、代价函数设计与开关状态选择机制,并可通过修改电机参数或控制策略进行拓展实验,以增强实践与创新能力。
根据原作 https://pan.quark.cn/s/23d6270309e5 的源码改编 湖北省黄石市2021年中考数学试卷所包含的知识点广泛涉及了中学数学的基础领域,涵盖了实数、科学记数法、分式方程、几何体的三视图、立体几何、概率统计以及代数方程等多个方面。 接下来将对每道试题所关联的知识点进行深入剖析:1. 实数与倒数的定义:该题目旨在检验学生对倒数概念的掌握程度,即一个数a的倒数表达为1/a,因此-7的倒数可表示为-1/7。 2. 科学记数法的运用:科学记数法是一种表示极大或极小数字的方法,其形式为a×10^n,其中1≤|a|<10,n为整数。 此题要求学生运用科学记数法表示一个天文单位的距离,将1.4960亿千米转换为1.4960×10^8千米。 3. 分式方程的求解方法:考察学生解决包含分母的方程的能力,题目要求找出满足方程3/(2x-1)=1的x值,需通过消除分母的方式转化为整式方程进行解答。 4. 三视图的辨认:该题目测试学生对于几何体三视图(主视图、左视图、俯视图)的认识,需要识别出具有两个相同视图而另一个不同的几何体。 5. 立体几何与表面积的计算:题目要求学生计算由直角三角形旋转形成的圆锥的表面积,要求学生对圆锥的底面积和侧面积公式有所了解并加以运用。 6. 统计学的基础概念:题目涉及众数、平均数、极差和中位数的定义,要求学生根据提供的数据信息选择恰当的统计量。 7. 方程的整数解求解:考察学生在实际问题中进行数学建模的能力,通过建立方程来计算在特定条件下帐篷的搭建方案数量。 8. 三角学的实际应用:题目通过在直角三角形中运用三角函数来求解特定线段的长度。 利用正弦定理求解AD的长度是解答该问题的关键。 9. 几何变换的应用:题目要求学生运用三角板的旋转来求解特定点的...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值