1.折线图
折线图通常用来表示数据随时间或有序类别变化的趋势。
'''1.简单示例'''
import matplotlib.pyplot as plt
data = [1,2,3,4,5,4,2,6,9,2] # 数据
plt.plot(data)
plt.show()
'''2.绘制多条曲线、曲线颜色、线型、标记等参数'''
import matplotlib.pyplot as plt
import matplotlib.font_manager as fm # 字体库
yy = [1,2,3,4,5,2,3,7,4,3,9,2]
xx = [3,6,4,8,2,6,9,4,5,8,1,7]
zz = [5,6,8,1,3,4,9,1,3,4,8,1]
plt.plot(yy, color='r', linewidth=5, linestyle=':', label='Data 1')
plt.plot(xx, color='g', linewidth=2, linestyle='--', label='Data 2')
plt.plot(zz, color='b', linewidth=0.5, linestyle='-', label='Data 3')
plt.legend(loc=2)
plt.xlabel('X轴名称', fontproperties='simhei') # 中文显示
plt.ylabel('Y轴名称', fontproperties='simhei')
plt.title('折线图美化示例', fontproperties='simhei')
plt.ylim(0,10)
plt.show()
'''3.对数据进行标注'''
import matplotlib.pyplot as plt
month = list(range(1,13))
money = [5.2,7.7,5.8,5.7,7.3,9.2,18.7,14.6,20.5,17.0,9.8,6.9]
plt.plot(month, money, 'r-.v') # 红色点划线链接,数据处用三角表示
plt.xlabel('month', fontsize=14)
plt.ylabel('money',fontsize=14)
plt.title('earth', fontsize=18)
plt.show()
| ![]() | ![]() |
2.散点图
matplotlib.pyplot.scatter可以绘制散点图
'''1.简单示例'''
import matplotlib.pyplot as plt
import numpy as np
N = 10
x = np.random.rand(N)
y = np.random.rand(N)
plt.scatter(x,y)
plt.show()
'''2.随机改变点的大小'''
import matplotlib.pyplot as plt
import numpy as np
N = 10
x = np.random.rand(N)
y = np.random.rand(N)
size = (30*np.random.rand(N)) ** 2
plt.scatter(x,y,s=size)
plt.show()
'''3.随机更改颜色,透明度为0.5'''
import matplotlib.pyplot as plt
import numpy as np
N = 10
x = np.random.rand(N)
y = np.random.rand(N)
size = (30*np.random.rand(N)) ** 2
color = np.random.rand(N)
plt.scatter(x,y,s=size,c=color,alpha=0.5)
plt.show()
'''4.更改散点形状'''
import matplotlib.pyplot as plt
import numpy as np
N = 10
x = np.random.rand(N)
y = np.random.rand(N)
size = (30*np.random.rand(N)) ** 2
color = np.random.rand(N)
plt.scatter(x,y,s=size,c=color,alpha=0.5,marker='^')
plt.show()
'''5.绘制两组数据'''
import matplotlib.pyplot as plt
import numpy as np
N = 10
x1 = np.random.rand(N)
y1 = np.random.rand(N)
x2 = np.random.rand(N)
y2 = np.random.rand(N)
plt.scatter(x1,y1,alpha=0.5,marker='^')
plt.scatter(x2,y2,alpha=0.5,marker='o')
plt.show()
'''6.增加图例'''
import matplotlib.pyplot as plt
import numpy as np
N = 10
x1 = np.random.rand(N)
y1 = np.random.rand(N)
x2 = np.random.rand(N)
y2 = np.random.rand(N)
plt.scatter(x1,y1,alpha=0.5,marker='^',label='triangle')
plt.scatter(x2,y2,alpha=0.5,marker='o',label='circle')
plt.legend(loc='best')
plt.show()
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
参考:读芯术python课程学习