本篇博文主要介绍深度学习算法的一些经验,主要参考Andrew NG的新书《Machine Learning Yearning》,目前出到第14章,基本上都是介绍深度学习在工程上的应用,全书没有数学公式,可以说是干货满满,非常值得一读!接下来我将结合自己的项目经历,以这本书为顺序介绍自己的心得体会。
链接(1~12章):
https://gallery.mailchimp.com/dc3a7ef4d750c0abfc19202a3/files/Machine_Learning_Yearning_V0.5_01.pdf
链接(第13章):
https://gallery.mailchimp.com/dc3a7ef4d750c0abfc19202a3/files/Machine_Learning_Yearning_V0.5_02.pdf
链接(第14章):
https://gallery.mailchimp.com/dc3a7ef4d750c0abfc19202a3/files/Machine_Learning_Yearning_V0.5_03.pdf
一、Why Machine Learning Strategy
这一章主要是抛砖引玉,指出在你的深度学习模型遇到问题的时候,你需要选择合适的方法解决,那么一般都有哪些方法呢?作者列举了以下几个:
1、获取更多的数据。
2、增加训练样本的多样性。
3、增加迭代次数。
4、试试更深、更宽的网络,比如增加层数,卷积核个数,参数等等。
5、试试更小的网络。
6、加正则项,比如L2正则项。