题目网址:http://acm.hdu.edu.cn/showproblem.php?pid=3605
题目大意: 一共有n个人,m个星球,每个人对于不同星球可能可以住,可能不能住,每个星球也有人数限制,最后问是否存在所有人都住下的情况。注意n的范围是100w,m是10.
解: 不难想到这是一个最大流的问题,算出最大能住的人是否大于总人数,但是n的范围太大,寻常方法必定会跪,再仔细看数组,n和m的范围相差很大,所以可以想到把n个人进行状态压缩,一共就有1024种状态了,然后接下来就是网络流最根本的建图问题,先建立一个超级源点1,它连向每个状态,边权为当前状态值,然后每个状态再连向m个星球,边权为无限,最后m个星球连向超级汇点,边权为容量,最后直接上模板就行了,顺便,我是一个ISAP选手,ISAP挺快的,一般不会存在TLE问题,最后注意下我使用了输入外挂,毕竟数据量大我怕超时,然后注意下初始化就行了。
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<vector>
#include<queue>
using namespace std;
#define LL long long
#define mxn 500000
#define inf 0x3f3f3f3f
int n, nu, m, e;
int people[mxn], p[mxn], vis[mxn], d[mxn], num[mxn], cur[mxn];
int sta;
int des;
struct Edge
{
int from, to, cap, flow;
}edge[mxn];
vector<int> G[mxn];
void addedge( int u, int v, int c )
{
edge[e].from = u;
edge[e].to = v;
edge[e].cap = c;
edge[e++].flow = 0;
edge[e].to = u;
edge[e].from = v;
edge[e].cap = 0;
edge[e++].flow = 0;
G[u].push_back( e - 2 );
G[v].push_back( e - 1 );
}
bool bfs( int s, int t )
{
memset( vis, 0, sizeof( vis ) );
queue<int> q;
q.push( t );
d[t] = 0;
vis[t] = 1;
while( !q.empty() )
{
int x = q.front();
q.pop();
for( int i = 0; i < G[x].size(); ++i )
{
Edge &e = edge[G[x][i]];
if( !vis[e.to] && e.cap > e.flow )
{
vis[e.to] = 1;
d[e.to] = d[x] + 1;
q.push( e.to );
}
}
}
return vis[t];
}
int Augment( int s, int t )
{
int x = t, a = inf;
while( x != s )
{
Edge &e = edge[p[x]];
a = min( a, e.cap - e.flow );
x = edge[p[x]].from;
}
x = t;
while( x != s )
{
edge[p[x]].flow += a;
edge[p[x]^1].flow -= a;
x = edge[p[x]].from;
}
return a;
}
int max_flow( int s, int t )
{
int f = 0;
memset( num, 0, sizeof( num ) );
bfs( s, t );
for( int i = 0; i <= des; ++i )
num[d[i]]++;
int x = s;
memset( cur, 0, sizeof( cur ) );
while( d[s] < n )
{
if( x == t )
{
f += Augment( s, t );
x = s;
}
int ok = 0;
for( int i = cur[x]; i < G[x].size(); ++i )
{
Edge &e = edge[G[x][i]];
if( e.cap > e.flow && d[x] == d[e.to] + 1 )
{
ok = 1;
p[e.to] = G[x][i];
cur[x] = i;
x = e.to;
break;
}
}
if( !ok )
{
int w = n - 1;
for( int i = 0; i < G[x].size(); ++i )
{
Edge &e = edge[G[x][i]];
if( e.cap > e.flow )
w = min( w, d[e.to] );
}
if( --num[d[x]] == 0 )
break;
num[d[x] = w + 1]++;
cur[x] = 0;
if( x != s )
x = edge[p[x]].from;
}
}
return f;
}
int scn()
{
int res = 0, ch, flag = 0;
if((ch = getchar()) == '-')
flag = 1;
else if(ch >= '0' && ch <= '9')
res = ch - '0';
while((ch = getchar()) >= '0' && ch <= '9' )
res = res * 10 + ch - '0';
return flag ? -res : res;
}
int main()
{
while( scanf("%d%d",&nu,&m) != EOF )
{
e = 0;
for( int i = 0; i <= ( 1 + ( 1 << m ) + m + 1 ); ++i )//我这里没加等号导致wa了很久
G[i].clear();
memset( d, 0, sizeof( d ) );
memset( people, 0, sizeof( people ) );
memset( p, 0, sizeof( p ) );
des = 1 + ( 1 << m ) + m + 1;
n = des;
for( int i = 0; i < nu; ++i )
{
int t = 0;
for( int j = 0; j < m; ++j )
{
int u = scn();
if( u )
t += ( 1 << j );
}
people[t]++;
}
for( int i = 0; i < m; ++i )
{
int x;
scanf("%d",&x);
addedge( i + ( 1 << m ) + 2, des, x );
}
for( int i = 0; i < ( 1 << m ); ++i )
{
if( !people[i] )
continue;
addedge( 1, i + 2, people[i] );
for( int j = 0; j < m; ++j )
{
int k = 1 << j;
if( k & i )
addedge( i + 2, j + ( 1 << m ) + 2, inf );
}
}
int ans = max_flow( 1, des );
if( ans >= nu )
puts("YES");
else puts("NO");
}
return 0;
}