编程之美初赛第一场 树

题目2 : 树

时间限制:4000ms
单点时限:2000ms
内存限制:256MB

描述

有一个N个节点的树,其中点1是根。初始点权值都是0。

一个节点的深度定义为其父节点的深度+1,。特别的,根节点的深度定义为1。

现在需要支持一系列以下操作:给节点u的子树中,深度在l和r之间的节点的权值(这里的深度依然从整个树的根节点开始计算),都加上一个数delta。

问完成所有操作后,各节点的权值是多少。


为了减少巨大输出带来的开销,假设完成所有操作后,各节点的权值是answer[1..N],请你按照如下方式计算出一个Hash值(请选择合适的数据类型,注意避免溢出的情况)。最终只需要输出这个Hash值即可。


MOD =1000000007; // 10^9 + 7

MAGIC= 12347;

Hash =0;

For i= 1 to N do

   Hash = (Hash * MAGIC + answer[i]) mod MOD;

EndFor


输入

第一行一个整数T (1 ≤ T ≤ 5),表示数据组数。

接下来是T组输入数据,测试数据之间没有空行。

每组数据格式如下:

第一行一个整数N (1 ≤ N ≤ 105),表示树的节点总数。

接下来N - 1行,每行1个数,a (1 ≤ a ≤ N),依次表示2..N节点的父亲节点的编号。

接下来一个整数Q(1 ≤ Q ≤ 105),表示操作总数。

接下来Q行,每行4个整数,u, l, r, delta (1 ≤ u ≤ N, 1 ≤ l ≤ r ≤ N, -109 ≤ delta ≤ 109),代表一次操作。


输出

对每组数据,先输出一行“Case x: ”,x表示是第几组数据,然后接这组数据答案的Hash值。


数据范围


小数据:1 ≤ N, Q ≤ 1000

大数据:1 ≤ N, Q ≤ 105


样例解释

点1的子树中有1,2,3三个节点。其中深度在2-3之间的是点2和点3。

点2的子树中有2,3两个节点。其中没有深度为1的节点。

所以,执行完所有操作之后,只有2,3两点的权值增加了1。即答案是0 1 1。再计算对应的Hash值即可。




样例输入
1
3
1
2
2
1 2 3 1
2 1 1 1
样例输出
Case 1: 12348
### 关于2024百度之星初赛第一场的题目解析 目前尚未有官方发布的关于2024百度之星初赛第一场的具体题目解析文档被广泛传播或公开引用。然而,基于以往的比赛惯例以及社区讨论的内容[^1],可以推测该比赛通常涉及算法设计、数据结构应用以及编程技巧等方面的知识。 #### 题目类型分析 根据过往几年百度之星竞赛的特点,其题目可能涵盖但不限于以下几个方面: - **字符串处理**:此类问题经常考察参赛者对于复杂模式匹配的理解能力,例如KMP算法的应用场景或者正则表达式的高效实现方法。 - **动态规划 (Dynamic Programming)**:这是解决最优化问题的一种重要手段,在许多比赛中都会出现。它通过把原问题分解成相对简单的子问题来求解复杂问题的方法[^2]。 - **图论(Graph Theory)**:包括但不限于最小生成(MST),单源最短路径(SSSP)等问题都是常见考点之一。这些都需要扎实的基础理论支持才能快速找到最优解答方案[^3]。 以下是针对假设性的几类典型问题提供一些通用思路和技术要点说明: --- #### 字符串处理案例解析 如果遇到需要频繁查询某个特定字符序列是否存在的情况,则可考虑构建AC自动机来进行批量检索操作;而对于仅需判断两个字符串之间关系的任务来说,双指针技术往往能够满足需求并保持较低时间复杂度O(n)[^4]。 ```python def is_subsequence(s, t): it = iter(t) return all(char in it for char in s) # Example Usage: print(is_subsequence("abc", "ahbgdc")) # Output: True ``` --- #### 动态规划实例讲解 当面临背包问题变种或是区间覆盖等相关挑战时,定义状态转移方程至关重要。比如经典的一维数组形式dp[i]=max(dp[i], dp[j]+w(i,j))表示从前j项选取若干物品放入容量不超过i的情况下所能获得的最大价值总和[^5]。 ```python def knapsack(weights, values, capacity): n = len(values) dp = [0]*(capacity+1) for i in range(1,n+1): w,v=weights[i-1],values[i-1] for j in reversed(range(capacity+1)): if j >=w : dp[j]= max(dp[j], dp[j-w]+v ) return dp[-1] # Example Usage: weights=[2,3,4] values =[3,4,5] capacity=5 result=knapsack(weights,values,capacity) print(result) # Output:7 ``` --- #### 图论基础概念复习 在面对连通性验证或者是寻找关键节点这样的任务时,BFS/DFS遍历配合并查集Union-Find的数据结构通常是首选策略。它们能够在几乎线性时间内完成大规模网络拓扑属性计算工作[^6]。 ```python from collections import defaultdict, deque class Graph: def __init__(self): self.graph = defaultdict(list) def addEdge(self,u,v): self.graph[u].append(v) self.graph[v].append(u) def BFS(self,start_vertex): visited=set() queue=deque([start_vertex]) while(queue): vertex=queue.popleft() if(vertex not in visited): visited.add(vertex) queue.extend(set(self.graph[vertex])-visited) return list(visited) g=Graph() edges=[[0,1],[0,2],[1,2],[2,3]] for u,v in edges:g.addEdge(u,v) res=g.BFS(2) print(res) #[2, 0, 1, 3] ``` 尽管以上只是部分可能涉及到的技术领域概述及其简单示例展示,但对于准备参加类似赛事的学习者而言已经具备相当指导意义了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值