SQL merge into的用法

本文介绍了如何使用SQL的MERGE INTO语句,通过rownum创建示例表,详细讲解了三种用法:1) 不重复插入目标表;2) 重复时更新目标表;并强调了不能更新ON条件中的字段。

一. 先利用rownum伪列 创建两张表

    SQL> create table m1 as select * from mail where rownum<5;
    SQL> create table m2 as select id,name,mail from (select rownum rn,id,name,mail from mail) where rn>3;      ---注意当利用rownum大于某值时,需用到子查询,在子查询中的结果集中显示出rownum列(并给伪列一个别名)--最后对这个伪列做大于的比较

    两表内容:SQL> select * from m1;

        ID NAME                      MAIL
---------- ------------------------- -------------------------
       258 wk                        ge.wang@htfg.com
       259 wk                        zhijun.li@htfg.com
       260 wk                        fang.wu@htfg.com
       261 wk                        pei.sun@htfg.com      ---两表重复行           ---------表共4行数据
SQL> select * from m2;

        ID NAME                      MAIL
---------- ------------------------- -------------------------
       261 wk                        pei.sun@htfg.com      ----两表重复行            -----表共6行数据
       262 wk                        xiaoping.shi@htfg.com
       263 wk                        jizhu.hu@htfg.com
       264 wk                        wei.wang@htfg.com
       265 wk                        wx@htfg.com
       266 wk                        meng.wu@htfg.com                                      

二:用法示例

① 以m1为目标表,将m2插入到m1,重复的行不插入

SQL>   merge into m1 a                              ------  into 目标表m1
  2     using m2 b                                  ------  use 源表m2
  3     on (a.id=b.id)                              ------  on 基于条件 m1的id和m2的id 列值相等
  4     when not matched then                       ------  不匹配关联条件,作插入处理
  5     insert values(b.id,b.name,b.mail);

SQL> select count(*) from m1;

COUNT(*)

         9

②以m1为目标表,将m2插入到m1,重复的行做更新set

  SQL> merge into m1 a
    using m2 b
    on (a.id=b.id)
    when matched then                          ------如果匹配关联条件
    update set a.name='hththt'                ------则设置匹配的行的  name段  值为 hththt
    when not matched then
    insert values(b.id,b.name,b.mail); 

③ 不能更新on 关联条件 里面的字段 如例子当中的 id列

    报错   ORA-38104: Columns referenced in the ON Clause cannot be updated: "A"."ID"
### Pandas 文件格式读写操作教程 #### 1. CSV文件的读取与保存 Pandas 提供了 `read_csv` 方法用于从 CSV 文件中加载数据到 DataFrame 中。同样,也可以使用 `to_csv` 将 DataFrame 数据保存为 CSV 文件。 以下是具体的代码示例: ```python import pandas as pd # 读取CSV文件 df = pd.read_csv('file.csv') # 加载本地CSV文件 [^1] # 保存DataFrame为CSV文件 df.to_csv('output.csv', index=False) # 不保存行索引 [^1] ``` --- #### 2. JSON文件的读取与保存 对于JSON格式的数据,Pandas 支持通过 `read_json` 和 `to_json` 进行读取和存储。无论是本地文件还是远程 URL 都支持。 具体实现如下所示: ```python # 读取本地JSON文件 df = pd.read_json('data.json') # 自动解析为DataFrame对象 [^3] # 从URL读取JSON数据 url = 'https://example.com/data.json' df_url = pd.read_json(url) # 直接从网络地址获取数据 # 保存DataFrame为JSON文件 df.to_json('output.json', orient='records') ``` --- #### 3. Excel文件的读取与保存 针对Excel文件操作Pandas 使用 `read_excel` 来读取 `.xls` 或 `.xlsx` 格式的文件,并提供 `to_excel` 方法导出数据至 Excel 表格。 注意:需要安装额外依赖库 `openpyxl` 或 `xlrd` 才能正常运行这些功能。 ```python # 安装必要模块 (如果尚未安装) !pip install openpyxl xlrd # 读取Excel文件 df_excel = pd.read_excel('file.xlsx', sheet_name='Sheet1') # 导出DataFrame为Excel文件 df.to_excel('output.xlsx', sheet_name='Sheet1', index=False) ``` --- #### 4. SQL数据库的交互 当涉及关系型数据库时,Pandas 可借助 SQLAlchemy 库连接各种类型的数据库(如 SQLite, MySQL)。它允许直接查询并将结果作为 DataFrame 返回;或者反过来把现有 DataFrame 插入到指定表中。 下面是基于SQLite的一个例子: ```python from sqlalchemy import create_engine # 创建引擎实例 engine = create_engine('sqlite:///database.db') # 查询SQL语句并返回DataFrame query = "SELECT name, salary, department FROM employees" sql_df = pd.read_sql(query, engine) # 计算各部门平均工资 avg_salary_by_dept = sql_df.groupby('department')['salary'].mean() # 将DataFrame存回SQL表 avg_salary_by_dept.to_sql(name='average_salaries_per_department', con=engine, if_exists='replace', index=True) ``` 上述片段说明了如何执行基本SQL命令以及后续数据分析流程[^4]。 --- #### 5. 多层次索引(MultiIndex)的应用场景 除了常规单维度索引外,在某些复杂情况下可能需要用到多级索引结构。这时可以依靠 MultiIndex 构建更加灵活的数据模型。 例如定义一个多层列名体系: ```python arrays = [['A','A','B','B'], ['foo','bar','foo','bar']] tuples = list(zip(*arrays)) index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second']) df_multi_indexed = pd.DataFrame([[0,1,2,3], [4,5,6,7]], columns=index) print(df_multi_indexed) ``` 这段脚本演示了怎样构建一个具有双重分类标签的表格布局[^2]。 --- ### 总结 综上所述,Pandas 是一种强大而易用的数据处理工具包,适用于多种常见文件类型之间的相互转换及其高级特性应用开发之中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值