题意:给出一张有向图,判断每个点是否只属于一个环,并输出环的权(即组成环的边权值之和)
参考http://blog.youkuaiyun.com/scf0920/article/details/36657717
拆点后建图,如果每个点都是环的一部分而且每个点只能用到一次的话,那每个点的初度入度都是1,这就可以利用网络流来解决,只要拆点令其流量为1,就限制了每个点只能用一次,每次左边的连到右边的,就相当于左边点的一次初度和右边的点的一次入度,很容易想象出来。最后只要判断总流量是否为n即可,因为如果总流量为n的话,说明每个点都出了一次度,每个点都入了一次度,而且由于拆点的流量限制,充分说明了每个点的初度入度都是1.进而说明了每个点都在环里。然后输出最后的最小费用流即为最短距离。
hdu 1853代码:
#include <bits/stdc++.h>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <cmath>
#include <time.h>
#include <vector>
#include <cstdio>
#include <string>
#include <iomanip>
///cout << fixed << setprecision(13) << (double) x << endl;
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
#define ls rt << 1
#define rs rt << 1 | 1
#define pi acos(-1.0)
#define eps 1e-8
#define Mp(a, b) make_pair(a, b)
#define asd puts("asdasdasdasdasdf");
typedef long long ll;
typedef pair <int, int> pl;
//typedef __int64 LL;
const int inf = 0x3f3f3f3f;
const int N = 880;
const int st = N-9, ed = N-8;
struct node{
int v, w, c, nxt; //c--->cap w--->cost(dis)
}e[N*N*10];
int cnt, n, m;
int head[N];
int dis[N]; //费用看成距离
int cap[N]; //流量
int cur[N]; //当前弧
int vis[N];
queue <int> q;
int flow, cost;
void init()
{
cnt = 0;
memset( head, -1, sizeof( head ) );
}
void add( int u, int v, int c, int w )
{
e[cnt].v = v;
e[cnt].c = c;
e[cnt].w = w;
e[cnt].nxt = head[u];
head[u] = cnt++;
e[cnt].v = u;
e[cnt].c = 0;
e[cnt].w = -w;
e[cnt].nxt = head[v];
head[v] = cnt++;
}
bool spfa()
{
memset( dis, inf, sizeof( dis ) );
memset( vis, 0, sizeof( vis ) );
while( !q.empty() ) q.pop();
cap[st] = inf;
cur[st] = -1;
dis[st] = 0;
q.push( st );
while( !q.empty() ) {
int u = q.front();
q.pop();
vis[u] = 0;
for( int i = head[u]; ~i; i = e[i].nxt ) {
int v = e[i].v, c = e[i].c, w = e[i].w;
if( c && dis[v] > dis[u] + w ) {
dis[v] = dis[u] + w;
cap[v] = min( c, cap[u] );
cur[v] = i;
if( !vis[v] ) {
vis[v] = 1;
q.push(v);
}
}
}
}
if( dis[ed] == inf )
return 0;
flow += cap[ed];
cost += cap[ed] * dis[ed];
for( int i = cur[ed]; ~i; i = cur[e[i^1].v] ) {
e[i].c -= cap[ed];
e[i^1].c += cap[ed];
}
return 1;
}
int MCMF()
{
flow = cost = 0;
while( spfa() );
return cost;
}
int main()
{
while( ~scanf("%d%d", &n, &m) ) {
init();
for( int i = 1; i <= n; ++i ) {
add( st, i, 1, 0 );
add( i+n, ed, 1, 0 );
}
while( m-- ) {
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
add( u, v+n, 1, w );
}
int ans = MCMF();
if( flow != n )
puts("-1");
else
printf("%d\n", ans);
}
return 0;
}