Power of Cryptography
Time Limit: 1000MS | Memory Limit: 30000K | |
Total Submissions: 17712 | Accepted: 8933 |
Description
Current work in cryptography involves (among other things) large prime numbers and computing powers of numbers among these primes. Work in this area has resulted in the practical use of results from number theory and other branches of mathematics once considered to be only of theoretical interest.
This problem involves the efficient computation of integer roots of numbers.
Given an integer n>=1 and an integer p>= 1 you have to write a program that determines the n th positive root of p. In this problem, given such integers n and p, p will always be of the form k to the n th. power, for an integer k (this integer is what your program must find).
This problem involves the efficient computation of integer roots of numbers.
Given an integer n>=1 and an integer p>= 1 you have to write a program that determines the n th positive root of p. In this problem, given such integers n and p, p will always be of the form k to the n th. power, for an integer k (this integer is what your program must find).
Input
The input consists of a sequence of integer pairs n and p with each integer on a line by itself. For all such pairs 1<=n<= 200, 1<=p<10
101 and there exists an integer k, 1<=k<=10
9 such that k
n = p.
Output
For each integer pair n and p the value k should be printed, i.e., the number k such that k n =p.
Sample Input
2 16 3 27 7 4357186184021382204544
Sample Output
4 3 1234
Source
本题的主要思路在实现高精度大整数+二分查找。要注意的是数据中有可能存在无解的情况,所以要所求得的高精度向下取整。#include <iostream>
#include <string>
#include <sstream>
class BigInteger
{
public:
BigInteger():s("0"){}
BigInteger(const std::string & ss):s(ss.rbegin(),ss.rend()){}
BigInteger(int ii);
~BigInteger(){}
friend std::ostream& operator <<(std::ostream &, const BigInteger &);
friend BigInteger operator +(const BigInteger &, const BigInteger &);
friend BigInteger operator *(const BigInteger &, const BigInteger &);
friend BigInteger operator -(const BigInteger &, const BigInteger &);
friend bool operator > (const BigInteger &, const BigInteger &);
friend bool operator < (const BigInteger &, const BigInteger &);
friend bool operator >= (const BigInteger &, const BigInteger &);
friend bool operator <= (const BigInteger &, const BigInteger &);
bool operator == (const BigInteger &);
bool operator != (const BigInteger &);
BigInteger& operator ++();
BigInteger operator ++ (int);
BigInteger divideby2();
BigInteger pow(int n);
std::string::size_type getDigitCount() const{return s.size();}
private:
std::string s;
void reverse();
};
typedef std::string::size_type sz_type;
BigInteger::BigInteger(int ii)
{
std::ostringstream osformat;
osformat << ii;
std::istringstream is(osformat.str());
is >> s;
reverse();
}
void BigInteger::reverse()
{
sz_type i = 0, k = s.size() - 1;
while(i < k)
{
char c = s[i];
s[i] = s[k];
s[k] = c;
i++;
k--;
}
}
std::ostream& operator <<(std::ostream & os, const BigInteger & b)
{
std::string s(b.s.rbegin(),b.s.rend());
os << s;
return os;
}
BigInteger operator +(const BigInteger &a, const BigInteger &b)
{
BigInteger c;
c.s.clear();
sz_type sizeA = a.s.size();
sz_type sizeB = b.s.size();
sz_type size = sizeA < sizeB ? sizeA : sizeB;
int add = 0;
int bit = 0;
sz_type i = 0;
for(i = 0; i != size; i++)
{
bit = a.s[i] - '0' + b.s[i] - '0' + add;
c.s.push_back((char)(bit % 10 + '0'));
add = bit / 10;
}
while(i < sizeA)
{
bit = a.s[i] - '0' + add;
c.s.push_back((char)(bit % 10 + '0'));
add = bit / 10;
i++;
}
while(i < sizeB)
{
bit = b.s[i] - '0' + add;
c.s.push_back((char)(bit % 10 + '0'));
add = bit / 10;
i++;
}
if(add > 0)
c.s.push_back(char(add + '0'));
return c;
}
BigInteger operator *(const BigInteger &a, const BigInteger &b)
{
std::string c(a.s.size() + b.s.size(), '0');
sz_type sizeA = a.s.size();
sz_type sizeB = b.s.size();
int add = 0;
int bit = 0;
for(sz_type i = 0; i < sizeA; i++)
{
add = 0;
for(sz_type j = 0; j < sizeB; j++)
{
bit = (a.s[i] - '0') * (b.s[j] - '0') + add + c[j + i] - '0';
add = bit / 10;
bit = bit % 10;
c[j + i] = bit + '0';
}
c[i + sizeB] = add + '0';
}
while(c.size() > 1 && *c.rbegin() == '0')
c.erase(c.end() - 1);
BigInteger big;
big.s = c;
return big;
}
bool BigInteger::operator == (const BigInteger &a)
{
return s == a.s;
}
bool BigInteger::operator != (const BigInteger &a)
{
return !(s == a.s);
}
BigInteger& BigInteger::operator ++()
{
int add = 1;
sz_type size = s.size();
int bit = 0;
for(sz_type i = 0; i < size; i++)
{
bit = s[i] - '0' + add;
s[i] = char(bit % 10 + '0');
add = bit / 10;
}
if(add > 0)
s.push_back(add + '0');
return *this;
}
BigInteger BigInteger::operator ++ (int)
{
BigInteger ret(*this);
int add = 1;
sz_type size = s.size();
int bit = 0;
for(sz_type i = 0; i < size; i++)
{
bit = s[i] - '0' + add;
s[i] = char(bit % 10 + '0');
add = bit / 10;
}
if(add > 0)
s.push_back(add + '0');
return ret;
}
BigInteger operator - (const BigInteger &a, const BigInteger &b)
{
BigInteger c;
c.s.clear();
std::string big,little;
if(a > b)
{
big = a.s;
little = b.s;
}
else
{
big = b.s;
little = a.s;
}
int minus = 0;
typedef std::string::size_type sz_type;
sz_type sizeli = little.size();
int bit;
sz_type i = 0;
for(i = 0; i != sizeli; i++)
{
bit = big[i] - little[i] + minus;
if(bit >= 0)
minus = 0;
else
{
minus = -1;
bit = bit + 10;
}
c.s.push_back(bit + '0');
}
sz_type sizela = big.size();
while(i < sizela)
{
bit = big[i] - '0' + minus;
if(bit < 0)
{
minus = -1;
bit = bit + 10;
}
else
minus = 0;
c.s.push_back(bit + '0');
i++;
}
while(c.s.size() > 1 && *c.s.rbegin() == '0')
{
c.s.erase(c.s.end() - 1);
}
return c;
}
bool operator > (const BigInteger &a, const BigInteger &b)
{
if(a.s.size() == b.s.size())
{
std::string as(a.s.rbegin(), a.s.rend());
std::string bs(b.s.rbegin(), b.s.rend());
return as > bs;
}
return a.s.size() > b.s.size();
}
bool operator < (const BigInteger &a, const BigInteger &b)
{
if(a.s.size() == b.s.size())
{
std::string as(a.s.rbegin(), a.s.rend());
std::string bs(b.s.rbegin(), b.s.rend());
return as < bs;
}
return a.s.size() < b.s.size();
}
bool operator >= (const BigInteger &a, const BigInteger &b)
{
return !(a < b);
}
bool operator <= (const BigInteger &a, const BigInteger &b)
{
return !(a > b);
}
BigInteger BigInteger::divideby2()
{
std::string ss;
int bit = 0;
int add = 0;
for(std::string::const_reverse_iterator it = s.rbegin(); it != s.rend(); it++)
{
bit = add * 10 + *it - '0';
add = bit % 2;
bit = bit / 2;
ss.push_back(bit + '0');
}
while(s.size() > 1 && *ss.begin() == '0')
{
ss.erase(ss.begin());
}
return BigInteger(ss);
}
BigInteger BigInteger::pow(int n)
{
BigInteger base = 1;
for(int i = 0; i < n; i++)
{
base = base * *this;
}
return base;
}
BigInteger searchBydivide2(int n, const BigInteger &target)
{
BigInteger source;
int digitCount = target.getDigitCount();
int bit = digitCount / n;
if(digitCount % n != 0)
bit = bit + 1;
std::string start(bit - 1, '0');
start.insert(start.begin(), '1');
BigInteger left(start), right(std::string(bit, '9'));
BigInteger mid;
BigInteger rs;
while(left <= right && left != 0 && right != 0)
{
mid = (left + right).divideby2();
rs = mid.pow(n);
if(rs == target)
return mid;
else if(rs > target)
right = mid - 1;
else
left = mid + 1;
}
return right;
}
using namespace std;
int main()
{
int n;
string s;
BigInteger rs;
while(cin >> n >> s)
{
rs = searchBydivide2(n, BigInteger(s));
cout << rs << endl;
}
return 0;
}