Zero Sum(DFS)

本文介绍了一种使用深度优先搜索(DFS)算法来解决特定数学问题的方法,即找到所有长度为N(范围在3到9之间)的数字序列,通过在数字间插入加号、减号或空格,使得最终表达式的和为零。通过实例演示了如何生成满足条件的序列,并提供了实现这一算法的C++代码示例。
Zero Sum

Consider the sequence of digits from 1 through N (where N=9) in increasing order: 1 2 3 ... N.

Now insert either a `+' for addition or a `-' for subtraction or a ` ' [blank] to run the digits together between each pair of digits (not in front of the first digit). Calculate the result that of the expression and see if you get zero.

Write a program that will find all sequences of length N that produce a zero sum.

PROGRAM NAME: zerosum

INPUT FORMAT

A single line with the integer N (3 <= N <= 9).

SAMPLE INPUT (file zerosum.in)

7

OUTPUT FORMAT

In ASCII order, show each sequence that can create 0 sum with a `+', `-', or ` ' between each pair of numbers.

SAMPLE OUTPUT (file zerosum.out)

1+2-3+4-5-6+7
1+2-3-4+5+6-7
1-2 3+4+5+6+7
1-2 3-4 5+6 7
1-2+3+4-5+6-7
1-2-3-4-5+6+7

 

    题意:

    给出 N(3 ~ 9),代表有N个数,有3种操作符,分别是 + 加法,- 减法,” “ 连续(空格说明相邻的这两个数合在一起,比如 2  3 代表23,1 2 3代表123),找到适合的等式使结果和为0。最后按字典序输出。

 

    思路:

    DFS。先把符号存起来当为 N - 1的时候再继续判断等式时候和为0,注意处理空格符号。

  

    AC:

/*
TASK:zerosum
LANG:C++
ID:sum-g1
*/
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
char way[5],fin[10];
int n;

void dfs(int ans,char ope)
{
    fin[ans] = ope;
    if(ans == n - 1)
    {
        int num[10],sum = 0;
        for(int i = 1;i <= n;i++)   num[i] = i;
        for(int i = 1;i <= n - 1;i++)
        {
            int k = i,t = num[i];
            while(fin[k] == ' ')
            {
                t = t * 10 + num[k + 1];
                k++;
            }
            if(t != num[i]) num[i] = t;
        }
        sum += num[1];
        for(int i = 1;i <= n - 1;i++)
        {
            if(fin[i] == ' ') continue;
            if(fin[i] == '+') sum += num[i + 1];
            if(fin[i] == '-') sum -= num[i + 1];
        }
        if(!sum)
        {
            printf("%d",1);
            for(int i = 1;i <= n - 1;i++)
                printf("%c%d",fin[i],i + 1);
            printf("\n");
        }
        return;
    }
    for(int i = 1;i <= 3;i++)
        dfs(ans + 1,way[i]);
}

int main()
{
    freopen("zerosum.in","r",stdin);
    freopen("zerosum.out","w",stdout);
    way[1] = ' ';way[2] = '+';way[3] = '-';
    scanf("%d",&n);
    for(int i = 1;i <= 3;i++)   dfs(1,way[i]);
    return 0;
}

 

 

### 使用DFS解决树染色问题的最少时间计算 #### 1. 树染色问题背景 树染色问题的目标是在满足特定约束条件下,为树上的节点分配颜色。对于本问题而言,假设存在多种颜色可供选择,并且希望找到一种最优解使得总成本最低或所需操作次数最少。 在实际应用中,“最少时间”的定义可以根据具体需求有所不同。例如: - 如果每改变一次颜色需要花费单位时间,则目标是最小化总的变色次数。 - 或者考虑更复杂的权重模型,在这种情况下需综合评估各路径长度等因素影响。 此处讨论的是基于简单规则下的最小时间计算方式——即假定切换任意两不同颜色均耗费固定代价\(T\)[^1]。 --- #### 2. 解决方案设计 ##### 数据结构准备 利用邻接表存储无向树的信息以便于后续快速查询连接关系。同时引入辅助数组用于追踪当前状态下各个顶点所处的颜色以及访问状态等信息。 ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = 1e5 + 7; vector<vector<int>> tree(MAXN); // Tree represented as adjacency list. int color_time[MAXN]; // Minimum time to reach this state at each node. bool visited_node[MAXN]; int total_min_time = 0; // Global variable storing final answer. void initialize_data(int nodes){ fill(color_time, color_time + nodes + 1, INT_MAX); fill(visited_node, visited_node + nodes + 1, false); } // Function performing depth-first search while calculating minimum times. void dfs_calculate_minimum_times(int current_vertex, int previous_color, int accumulated_time){ if (visited_node[current_vertex]){ return ; } visited_node[current_vertex] = true; // Calculate new color based on some logic here... // For simplicity assume we toggle between two colors only. int next_color = (previous_color == 1 ? 2 : 1); // Transition cost from last vertex's color change plus existing accumulation. int transition_cost = ((next_color != previous_color)? 1 : 0 ); int updated_accumulated_time = accumulated_time + transition_cost; // Update the best known result for reaching this point with certain configuration. if(updated_accumulated_time < color_time[current_vertex]){ color_time[current_vertex] = updated_accumulated_time; // Propagate further into children vertices recursively now that local optimum established. for(auto child : tree[current_vertex]){ if(child != parent_of_current_in_dfs_traversal){ // Avoid going back up immediately after coming down an edge. dfs_calculate_minimum_times(child, next_color, updated_accumulated_time); } } } } ``` --- #### 3. 主函数调用流程 首先读取输入数据构建完整的树形拓扑结构,接着指定任一叶节点作为起点启动递归过程直至覆盖全图范围内的每一个角落位置为止最后统计汇总所得全局最短耗时时长数值即可得出结论[^2]. ```cpp int main(){ ios::sync_with_stdio(false); cin.tie(NULL); int num_nodes, edges_count; cin >> num_nodes >> edges_count; for(int i=0;i<edges_count;++i){ int u,v; cin>>u>>v; tree[u].emplace_back(v); tree[v].emplace_back(u); } initialize_data(num_nodes); // Start traversal arbitrarily picking first unprocessed leaf or root-like entity within structure formed by provided inputs. dfs_calculate_minimum_times(1 /*starting_point*/, 0/*no prior color initially*/, 0/*zero initial timing*/); long long overall_sum=accumulate(color_time+1,color_time+(num_nodes)+1,(long long )0); cout<<overall_sum<<"\n"; return 0; } ``` --- #### 4. 复杂度分析 该算法主要依赖单次遍历整棵树的操作模式完成任务因此总体性能表现良好属于线性级别范畴内\[O(N)\],其中\(N\)代表参与运算的所有节点数目之和[^3]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值