算法14--归并排序

今天去面试,让写一下归并排序,好久没有写排序了,有点忘了。

归并排序采用分治策略,时间复杂度为O(NlogN)  空间复杂度O(N)

        给定一个数组,从中间值划分为两部分,假定这两部分是有序的,则执行一个合并过程,将两个有序的数组合并成一个数组。以此类推,划分为的两个子数组是上述过程的子问题,因此可以递归解决。

递归的最后一层为子数组的元素个数只有一个,即有序。然后合并两个单元素数组组成有序的双元素数组,接着继续依次合并。

lo------------ q  q+1 -----------hi

假设子数组1  lo--q是有序的   子数组2  q+1到hi是有序的,进行合并操作:

指针i指向lo,变化范围lo---q  当i>q时,说明子数组1已经遍历完毕

指针j指向q+1,变化范围 q+1----hi  当i>hi时,说明子数组2已经遍历完毕

申请额外的空间,将要合并的两个子数组先复制到额外空间中,然后双指针指向两个子数组头,依次递归比较,将较小者放入原先组中位置,若某一个子数组已经全部遍历完毕,则将另一个依次放入即可。

private static int[] num;
	
	public static void mergeSort(int[] arr){
		num = new int[arr.length];
		mergeSort(arr, 0, arr.length-1);
	}
	
	private static void mergeSort(int[] arr, int lo, int hi){
		//当子数组中只有一个元素时,直接返回
		if(lo>=hi) return;
		//取中点值作为划分点,进行左右部分递归调用
		int q = (lo + hi) >> 1;
		mergeSort(arr, lo, q);
		mergeSort(arr, q+1, hi);
		merge(arr, lo, q, hi);
	}
	
	private static void merge(int[] arr, int lo, int q, int hi) {
		for(int k=lo; k<=hi; k++){
			num[k] = arr[k];
		}
		int i = lo;
		int j = q + 1;
		for(int k=lo; k<=hi; k++){
			//子数组1已经全部归并
			if(i>q) arr[k] = num[j++];
			//子数组2已经全部归并
			else if(j>hi) arr[k] = num[i++];
			//两个子数组均有数据时,取较小者
			else if(num[i]<num[j]) arr[k] = num[i++];
			else arr[k] = num[j++];
		}
	}

归并排序没有频繁的比较操作,因此比较适用于复杂对象的排序。有些排序算法要进行大量的比较运算,如果待排序对象的比较成本较高的话可以采用归并排序。

JDK中Arrays.sort排序方式:

当待排序元素为基本类型:   快速排序

public static void sort(double[] a) {
        DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
}

/**
     * Sorts the specified range of the array using the given
     * workspace array slice if possible for merging
     *
     * @param a the array to be sorted
     * @param left the index of the first element, inclusive, to be sorted
     * @param right the index of the last element, inclusive, to be sorted
     * @param work a workspace array (slice)
     * @param workBase origin of usable space in work array
     * @param workLen usable size of work array
     */
    static void sort(double[] a, int left, int right,
                     double[] work, int workBase, int workLen) {
        /*
         * Phase 1: Move NaNs to the end of the array.
         */
        while (left <= right && Double.isNaN(a[right])) {
            --right;
        }
        for (int k = right; --k >= left; ) {
            double ak = a[k];
            if (ak != ak) { // a[k] is NaN
                a[k] = a[right];
                a[right] = ak;
                --right;
            }
        }

        /*
         * Phase 2: Sort everything except NaNs (which are already in place).
         */
        doSort(a, left, right, work, workBase, workLen);

        /*
         * Phase 3: Place negative zeros before positive zeros.
         */
        int hi = right;

        /*
         * Find the first zero, or first positive, or last negative element.
         */
        while (left < hi) {
            int middle = (left + hi) >>> 1;
            double middleValue = a[middle];

            if (middleValue < 0.0d) {
                left = middle + 1;
            } else {
                hi = middle;
            }
        }

        /*
         * Skip the last negative value (if any) or all leading negative zeros.
         */
        while (left <= right && Double.doubleToRawLongBits(a[left]) < 0) {
            ++left;
        }

        /*
         * Move negative zeros to the beginning of the sub-range.
         *
         * Partitioning:
         *
         * +----------------------------------------------------+
         * |   < 0.0   |   -0.0   |   0.0   |   ?  ( >= 0.0 )   |
         * +----------------------------------------------------+
         *              ^          ^         ^
         *              |          |         |
         *             left        p         k
         *
         * Invariants:
         *
         *   all in (*,  left)  <  0.0
         *   all in [left,  p) == -0.0
         *   all in [p,     k) ==  0.0
         *   all in [k, right] >=  0.0
         *
         * Pointer k is the first index of ?-part.
         */
        for (int k = left, p = left - 1; ++k <= right; ) {
            double ak = a[k];
            if (ak != 0.0d) {
                break;
            }
            if (Double.doubleToRawLongBits(ak) < 0) { // ak is -0.0d
                a[k] = 0.0d;
                a[++p] = -0.0d;
            }
        }
    }

归并排序:

public static void sort(Object[] a, int fromIndex, int toIndex) {
        rangeCheck(a.length, fromIndex, toIndex);
        if (LegacyMergeSort.userRequested)
            legacyMergeSort(a, fromIndex, toIndex);
        else
            ComparableTimSort.sort(a, fromIndex, toIndex, null, 0, 0);
    }
private static void legacyMergeSort(Object[] a,
                                        int fromIndex, int toIndex) {
        Object[] aux = copyOfRange(a, fromIndex, toIndex);
        mergeSort(aux, a, fromIndex, toIndex, -fromIndex);
    }
private static void mergeSort(Object[] src,
                                  Object[] dest,
                                  int low,
                                  int high,
                                  int off) {
        int length = high - low;

        // Insertion sort on smallest arrays
        if (length < INSERTIONSORT_THRESHOLD) {
            for (int i=low; i<high; i++)
                for (int j=i; j>low &&
                         ((Comparable) dest[j-1]).compareTo(dest[j])>0; j--)
                    swap(dest, j, j-1);
            return;
        }

        // Recursively sort halves of dest into src
        int destLow  = low;
        int destHigh = high;
        low  += off;
        high += off;
        int mid = (low + high) >>> 1;
        mergeSort(dest, src, low, mid, -off);
        mergeSort(dest, src, mid, high, -off);

        // If list is already sorted, just copy from src to dest.  This is an
        // optimization that results in faster sorts for nearly ordered lists.
        if (((Comparable)src[mid-1]).compareTo(src[mid]) <= 0) {
            System.arraycopy(src, low, dest, destLow, length);
            return;
        }

        // Merge sorted halves (now in src) into dest
        for(int i = destLow, p = low, q = mid; i < destHigh; i++) {
            if (q >= high || p < mid && ((Comparable)src[p]).compareTo(src[q])<=0)
                dest[i] = src[p++];
            else
                dest[i] = src[q++];
        }
    }

    /**
     * Swaps x[a] with x[b].
     */
    private static void swap(Object[] x, int a, int b) {
        Object t = x[a];
        x[a] = x[b];
        x[b] = t;
    }

新版JDK中Arrays.sort排序方式感觉变化好大,并不是单纯的某一种单一排序方式,有时间把TimSort这个类研究一下。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值