快速排序

本文详细介绍了快速排序算法,包括其基本原理、实现方式(递归与迭代版本)及复杂度分析。快速排序是一种高效的排序方法,采用分治策略,通过选取基准元素并进行分区操作来实现排序。

Wiki

快速排序(英语:Quicksort),又称划分交换排序(partition-exchange sort),一种排序算法,最早由东尼·霍尔提出。在平均状况下,排序n个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n)算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。

算法

快速排序使用分治法(Divide and conquer)策略来把一个序列(list)分为两个子序列(sub-lists)。

步骤为:

  1. 从数列中挑出一个元素,称为”基准”(pivot),
  2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区结束之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
  3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
    递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

实现

C语言(递归版)

    void swap(int *x, int *y) {
        int t = *x;
        *x = *y;
        *y = t;
    }
    void quick_sort_recursive(int arr[], int start, int end) {
        if (start >= end)
            return;
        int mid = arr[end];
        int left = start, right = end - 1;
        while (left < right) {
            while (arr[left] < mid && left < right)
                left++;
            while (arr[right] >= mid && left < right)
                right--;
            swap(&arr[left], &arr[right]);
        }
        if (arr[left] >= arr[end])
            swap(&arr[left], &arr[end]);
        else
            left++;
        quick_sort_recursive(arr, start, left - 1);
        quick_sort_recursive(arr, left + 1, end);
    }
    void quick_sort(int arr[], int len) {
        quick_sort_recursive(arr, 0, len - 1);
    }

分析

swap函数 : 交换两个数;
step1(line9): 取数组最后一个元素作为基准数;
step2(line10):规定分区的左右界限;
step3(line11):界定循环的条件(while循环);
step3(line12&&line13):找到比基准数大的数字left
step3(line14&&line15):找到比基准数小的数字right
step3(line16):将上两步找到的两个数(left,right)进行交换
step4(line18~line21):step3做完的前提是left==right,此时判断基准数和left的大小,如果基准数小于left,则进行交换,即把基准数放到整个数组的中间,否则不交换;

以上就是一个“分区”排序完成的过程,为什么叫做“分区”?接下来就是分而治之:

step5(line22):刚刚排序完成的时候,left==right,也就是说,left左边都是比基准数小的,left右边都是比基准数大的数字。那么把left左边划分为一个“分区”,界限为0~left-1,再进行step1~step4的过程。
step5(line23):同理右边也是一个分区,界限为left+1~end,进行step1~step4的过程。

由此不断的进行分区与排序,也就是递归的过程,递归的结束标志是start>=end。

C语言(迭代版)

    typedef struct _Range {
        int start, end;
    } Range;
    Range new_Range(int s, int e) {
        Range r;
        r.start = s;
        r.end = e;
        return r;
    }
    void swap(int *x, int *y) {
        int t = *x;
        *x = *y;
        *y = t;
    }
    void quick_sort(int arr[], const int len) {
        if (len <= 0)
            return; 
        //r[]模拟堆叠,p为数量,r[p++]为push,r[--p]为pop且取得元素
        Range r[len];
        int p = 0;
        r[p++] = new_Range(0, len - 1);
        while (p) {
            Range range = r[--p];
            if (range.start >= range.end)
                continue;
            int mid = arr[range.end];
            int left = range.start, right = range.end - 1;
            while (left < right) {
                while (arr[left] < mid && left < right)
                    left++;
                while (arr[right] >= mid && left < right)
                    right--;
                swap(&arr[left], &arr[right]);
            }
            if (arr[left] >= arr[range.end])
                swap(&arr[left], &arr[range.end]);
            else
                left++;
            r[p++] = new_Range(range.start, left - 1);
            r[p++] = new_Range(left + 1, range.end);
        }
    }
代码转载自:https://pan.quark.cn/s/f87b8041184b Language: 中文 欢迎来到戈戈圈! 当你点开这个存储库的时候,你会看到戈戈圈的图标↓ 本图片均在知识共享 署名-相同方式共享 3.0(CC BY-SA 3.0)许可协议下提供,如有授权遵照授权协议使用。 那么恭喜你,当你看到这个图标的时候,就代表着你已经正式成为了一名戈团子啦! 欢迎你来到这个充满爱与希望的大家庭! 「与大家创造更多快乐,与人们一起改变世界。 」 戈戈圈是一个在中国海南省诞生的创作企划,由王戈wg的妹妹于2018年7月14日正式公开。 戈戈圈的创作类型广泛,囊括插画、小说、音乐等各种作品类型。 戈戈圈的目前成员: Contributors 此外,支持戈戈圈及本企划的成员被称为“戈团子”。 “戈团子”一词最初来源于2015年出生的名叫“团子”的大熊猫,也因为一种由糯米包裹着馅料蒸熟而成的食品也名为“团子”,不仅有团圆之意,也蕴涵着团结友爱的象征意义和大家的美好期盼,因此我们最终于2021年初决定命名戈戈圈的粉丝为“戈团子”。 如果你对戈戈圈有兴趣的话,欢迎加入我们吧(σ≧︎▽︎≦︎)σ! 由于王戈wg此前投稿的相关视频并未详细说明本企划的信息,且相关视频的表述极其模糊,我们特此创建这个存储库,以文字的形式向大家介绍戈戈圈。 戈戈圈自2018年7月14日成立至今,一直以来都秉持着包容开、和谐友善的原则。 我们深知自己的责任和使命,始终尊重社会道德习俗,严格遵循国家法律法规,为维护社会稳定和公共利益做出了积极的贡献。 因此,我们不允许任何人或组织以“戈戈圈”的名义在网络平台或现实中发布不当言论,同时我们也坚决反对过度宣传戈戈圈的行为,包括但不限于与戈戈圈无关的任何...
内容概要:本文详细介绍了一个基于YOLOv8的血细胞智能检测系统全流程开发指南,涵盖从环境搭建、数据准备、模型训练与验证到UI交互系统开发的完整实践过程。项目利用YOLOv8高精度、高速度的优势,实现对白细胞、红细胞和血小板的自动识别与分类,准确率超过93%,单张图像检测仅需0.3秒。通过公开或自建血细胞数据集,结合LabelImg标注工具和Streamlit开发可视化界面,构建了具备图像上传、实时检测、结果统计与异常提示功能的智能系统,并提供了论文撰写与成果展示建议,强化其在医疗场景中的应用价。; 适合人群:具备一定Python编程与深度学习基础,从事计算机视觉、医疗AI相关研究或项目开发的高校学生、科研人员及工程技术人员,尤其适合需要完成毕业设计或医疗智能化项目实践的开发者。; 使用场景及目标:①应用于医院或检验机构辅助医生进行血涂片快速筛查,提升检测效率与一致性;②作为深度学习在医疗影像领域落地的教学案例,掌握YOLOv8在实际项目中的训练、优化与部署流程;③用于学术论文写作与项目成果展示,理解技术与临床需求的结合方式。; 阅读建议:建议按照“数据→模型→系统→应用”顺序逐步实践,重点理解数据标注规范、模型参数设置与UI集成逻辑,同时结合临床需求不断优化系统功能,如增加报告导出、多类别细粒度分类等扩展模块。
基于蒙特卡洛,copula函数,fuzzy-kmeans获取6个典型场景进行随机优化多类型电动汽车采用分时电价调度,考虑上级电网出力、峰谷差惩罚费用、风光调度、电动汽车负荷调度费用和网损费用内容概要:本文围绕多类型电动汽车在分时电价机制下的优化调度展开研究,采用蒙特卡洛模拟、Copula函数和模糊K-means聚类方法获取6个典型场景,并在此基础上进行随机优化。模型综合考虑了上级电网出力、峰谷差惩罚费用、风光可再生能源调度、电动汽车负荷调度成本以及电网网损费用等多个关键因素,旨在实现电力系统运行的经济性与稳定性。通过Matlab代码实现相关算法,验证所提方法的有效性与实用性。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事新能源、智能电网、电动汽车调度相关工作的工程技术人员。; 使用场景及目标:①用于研究大规模电动汽车接入电网后的负荷调控策略;②支持含风光等可再生能源的综合能源系统优化调度;③为制定合理的分时电价政策及降低电网峰谷差提供技术支撑;④适用于学术研究、论文复现与实际项目仿真验证。; 阅读建议:建议读者结合文中涉及的概率建模、聚类分析与优化算法部分,动手运行并调试Matlab代码,深入理解场景生成与随机优化的实现流程,同时可扩展至更多元化的应用场景如V2G、储能协同调度等。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值