3158: 千钧一发
Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 648 Solved: 249
[ Submit][ Status][ Discuss]
Description
Input
第一行一个正整数N。
第二行共包括N个正整数,第 个正整数表示Ai。
第三行共包括N个正整数,第 个正整数表示Bi。
Output
共一行,包括一个正整数,表示在合法的选择条件下,可以获得的能量值总和的最大值。
Sample Input
4
3 4 5 12
9 8 30 9
Sample Output
39
HINT
1<=N<=1000,1<=Ai,Bi<=10^6
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <cmath>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <algorithm>
#define LL long long
using namespace std;
const int MAXN = 2000000 + 10;
const int INF = 0x7fffffff;
inline int read()
{
int x = 0, f = 1; char ch = getchar();
while(ch < '0' || ch > '9'){if(ch == '-') f=-1; ch = getchar();}
while(ch >= '0' && ch <= '9'){x = x * 10 + ch - '0'; ch = getchar();}
return x * f;
}
struct Edge{int to, next, cap, flow;}edge[MAXN<<2];
int tot, head[MAXN];
int gap[MAXN], dep[MAXN], pre[MAXN], cur[MAXN];
void init(){tot = 0; memset(head, -1, sizeof(head));}
void addedge(int u, int v, int w, int rw = 0)
{
edge[tot].to = v; edge[tot].cap = w; edge[tot].next = head[u];
edge[tot].flow = 0; head[u] = tot++;
edge[tot].to = u; edge[tot].cap = rw; edge[tot].next = head[v];
edge[tot].flow = 0; head[v] = tot++;
}
long long sap(int start, int end, int N)
{
memset(gap, 0, sizeof(gap));
memset(dep, 0, sizeof(dep));
memcpy(cur, head, sizeof(head));
int u = start; pre[u] = -1; gap[0] = N; long long ans = 0;
while(dep[start] < N)
{
if(u == end)
{
long long Min = INF;
for(int i=pre[u];i!=-1;i=pre[edge[i^1].to])
if(Min > edge[i].cap - edge[i].flow)
Min = edge[i].cap - edge[i].flow;
for(int i=pre[u];i!=-1;i=pre[edge[i^1].to])
{
edge[i].flow += Min;
edge[i^1].flow -= Min;
}
u = start; ans += Min; continue;
}
bool flag = false; int v;
for(int i=cur[u];i!=-1;i=edge[i].next)
{
v = edge[i].to;
if(edge[i].cap - edge[i].flow && dep[v] + 1 == dep[u])
{
flag = true;
cur[u] = pre[v] = i;
break;
}
}
if(flag){u = v; continue;}
int Min = N;
for(int i=head[u];i!=-1;i=edge[i].next)
if(edge[i].cap - edge[i].flow && dep[edge[i].to] < Min)
{
Min = dep[edge[i].to];
cur[u] = i;
}
gap[dep[u]]--;
if(!gap[dep[u]]) return ans;
dep[u] = Min + 1;
gap[dep[u]]++;
if(u != start) u = edge[pre[u]^1].to;
}
return ans;
}
int n, a[1010], b[1010];
bool judge(int x, int y)
{
x = a[x], y = a[y];
if(__gcd(x, y) > 1) return 1;
long long tmp = 1ll * x * x + 1ll * y * y;
long long t = sqrt(tmp);
if(t * t != tmp) return 1;
return 0;
}
int main()
{
n = read();long long ans = 0;init();
int S = 0, T = n + 1;
for(int i=1;i<=n;i++) a[i] = read();
for(int i=1;i<=n;i++) b[i] = read(), ans += b[i];
for(int i=1;i<=n;i++)
{
if(a[i] % 2 == 0) addedge(S, i, b[i]);
else addedge(i, T, b[i]);
for(int j=1;j<=n;j++)
{
if(a[i] % 2 == 0 && a[j] % 2 == 1)
{
if(!judge(i, j)) addedge(i, j, INF);
}
}
}
long long res = sap(S, T, n + 2);
printf("%lld\n", ans - res);
return 0;
}