- 转载链接地址:http://blog.chinaunix.net/uid-27717694-id-3519302.html
-
- 一、I2C概述
- Linux的I2C体系结构分为3个组成部分:
- 1.I2C核心
- I2C 核心提供了I2C总线驱动和设备驱动的注册、注销方法,I2C通信方法(即“algorithm”)上层的、与具体适配器无关的代码以及探测设备、检测设备地址的上层代码等。
- 2.I2C总线驱动
- I2C总线驱动是对I2C硬件体系结构中适配器端的实现,适配器可由CPU控制,甚至直接集成在CPU内部。
- I2C总线驱动主要包含了I2C适配器数据结构i2c_adapter、I2C适配器的algorithm数据结构i2c_algorithm和控制I2C适配器产生通信信号的函数。
- 经由I2C总线驱动的代码,我们可以控制I2C适配器以主控方式产生开始位、停止位、读写周期,以及以从设备方式被读写、产生ACK等。
- 3.I2C设备驱动
- I2C设备驱动是对I2C硬件体系结构中设备端的实现,设备一般挂接在受CPU控制的I2C适配器上,通过I2C适配器与CPU交换数据。
- I2C设备驱动主要包含了数据结构i2c_driver和i2c_client,我们需要根据具体设备实现其中的成员函数。
-
- 二、下面介绍i2c各核心数据结构的定义和它们之间的连接关系。
- 1. 一个i2c设备的驱动程序由i2c_driver数据结构描述,i2c_driver代表I2C从设备驱动,定义于include/linux/i2c.h:
- struct i2c_driver {
- unsigned int class;
- /* 这两个接口已经被probe和remove取代 */
- int (*attach_adapter)(struct i2c_adapter *);//attach_adapter回调函数在安装i2c设备驱动程序模块时、或者在安装i2c适配器驱动程序模块时被调用,
- //用于检测、认领设备并为设备分配i2c_client数据结构。
- int (*detach_adapter)(struct i2c_adapter *);//detach_client方法在卸载适配器或设备驱动程序模块时被调用,用于从总线上注销设备、并释放i2c_client及相应的私有数据结构。
-
- int (*probe)(struct i2c_client *, const struct i2c_device_id *);
- int (*remove)(struct i2c_client *);
-
- void (*shutdown)(struct i2c_client *);
- int (*suspend)(struct i2c_client *, pm_message_t mesg);
- int (*resume)(struct i2c_client *);
- void (*alert)(struct i2c_client *, unsigned int data);
- int (*command)(struct i2c_client *client, unsigned int cmd, void *arg);
- struct device_driver driver;/*设备驱动结构体*/
- const struct i2c_device_id *id_table;//该驱动所支持的设备ID表
- int (*detect)(struct i2c_client *, struct i2c_board_info *);
- const unsigned short *address_list;
- struct list_head clients;
- };
-
- 2. 一个i2c适配器由i2c_adapter数据结构描述
- /*
- i2c adapter是软件上抽象出来的i2c总线控制器接口
- 物理上一条i2c总线可以挂接多个硬件设备(slave),一个CPU可以挂接多条i2c总线(想象一下PCI总线)
- i2c总线控制器就是CPU访问I2C总线的硬件接口,也就是你说的那几个寄存器 .
-
- 简单点了, 你的开发板上有几个I2C接口,就有几个adapter , 也就是有几条I2C bus , I2C CLIENT 对应的就是你的外围I2C 设备,
- 有几个就有几个CLIENT , 把这些设备插入开发板, 对应其中的一条BUS, 那么相应的就对应了其中的一个ADAPTER ,
- 接下来的就是 CLIENT 与 ADAPTER 勾搭成对了, 后面就是做该做的事了.
- */
- struct i2c_adapter {
- struct module *owner;/*所属模块*/
- unsigned int id; /*algorithm的类型,定义于i2c-id.h,以I2C_ALGO_开始*/
- unsigned int class;
- struct i2c_algorithm *algo;/*总线通信方法结构体指针,一个i2c适配器上的i2c总线通信方法由其驱动程序提供的i2c_algorithm数据结构描述,由algo指针指向 */
- void *algo_data; /* algorithm数据 */
- int (*client_register)(struct i2c_client *); /*client注册时调用*/
- int (*client_unregister)(struct i2c_client *); /*client注销时调用*/
- struct semaphore bus_lock; /*控制并发访问的自旋锁*/
- struct semaphore clist_lock;
- int timeout;
- int retries; /*重试次数*/
- struct device dev; /* 适配器设备 */
- struct class_device class_dev; /* 类设备 */
- int nr;
- struct list_head clients; /* client链表头,总线上每个设备的 i2c_client数据结构挂载在这里*/
- struct list_head list;
- char name[I2C_NAME_SIZE]; /*适配器名称*/
- struct completion dev_released; /*用于同步*/
- struct completion class_dev_released;
- };
-
- 3.具体i2c适配器的通信方法由i2c_algorithm数据结构进行描述:
- struct i2c_algorithm {
- int (*master_xfer)(struct i2c_adapter *adap, struct i2c_msg *msgs,int num);//I2C传输函数指针
- int (*smbus_xfer) (struct i2c_adapter *adap, u16 addr,unsigned short flags, char read_write,u8 command, int size, union i2c_smbus_data *data);//SMbus传输函数指针
- u32 (*functionality) (struct i2c_adapter *);//返回适配器支持的功能
- };
-
- 4.一个i2c设备由i2c_client数据结构进行描述:
- struct i2c_client {
- unsigned int flags; /* 标志 */
- /*需要说明的是,i2c设备的7位地址是就当前i2c总线而言的,是“相对地址”。不同的i2c总线上的设备
- 可以使用相同的7位地址,但是它们所在的i2c总线不同。所以在系统中一个i2c设备的“绝对地址”由二
- 元组(i2c适配器的ID和设备在该总线上的7位地址)表示。
- */
- unsigned short addr; /* 低7位为芯片地址 */
- struct i2c_adapter *adapter; /*依附的i2c_adapter*/
- struct i2c_driver *driver; /*依附的i2c_driver */
- int usage_count; /* 访问计数 */
- struct device dev; /* 设备结构体 */
- struct list_head list; /* 链表头 */
- char name[I2C_NAME_SIZE]; /* 设备名称 */
- struct completion released; /* 用于同步 */
- };
-
- 5.下面分析一下i2c_driver、i2c_client、i2c_adapter和i2c_algorithm这4个数据结构的作用及其盘根错节的关系。
- 5.1 i2c_adapter与i2c_algorithm
- i2c_adapter 对应于物理上的一个适配器,而i2c_algorithm对应一套通信方法。一个I2C适配器需要i2c_algorithm中提供的通信函数来控制适配器上产生特定的访问周期。缺少i2c_algorithm的i2c_adapter什么也做不了,因此i2c_adapter中包含其使用的 i2c_algorithm的指针。
- i2c_algorithm中的关键函数master_xfer()用于产生I2C访问周期需要的信号,以i2c_msg(即I2C消息)为单位。i2c_msg结构体也非常关键。
- //i2c_msg结构体:
- struct i2c_msg {
- __u16 addr; /* 设备地址*/
- __u16 flags; /* 标志 */
- __u16 len; /* 消息长度*/
- __u8 *buf; /* 消息数据*/
- };
- 5.2 i2c_driver与i2c_client
- i2c_driver对应一套驱动方法,是纯粹的用于辅助作用的数据结构,它不对应于任何的物理实体。i2c_client对应于真实的物理设备,每个I2C设备都需要一个i2c_client来描述。i2c_client一般被包含在i2c字符设备的私有信息结构体中。
- i2c_driver 与i2c_client发生关联的时刻在i2c_driver的attach_adapter()函数被运行时。attach_adapter()会探测物理设备,当确定一个client存在时,把该client使用的i2c_client数据结构的adapter指针指向对应的i2c_adapter, driver指针指向该i2c_driver,并会调用i2c_adapter的client_register()函数。相反的过程发生在 i2c_driver 的detach_client()函数被调用的时候。
- 5.3 i2c_adpater与i2c_client
- i2c_adpater 与i2c_client的关系与I2C硬件体系中适配器和设备的关系一致,即i2c_client依附于i2c_adpater。由于一个适配器上可以连 接多个I2C设备,所以一个i2c_adpater也可以被多个i2c_client依附,i2c_adpater中包括依附于它的i2c_client 的链表。
-
- 三、I2C驱动的实现工作
- 一方面,适配器驱动可能是Linux内核本身还不包含的。另一方面,挂接在适配器上的具体设备驱动可能也是Linux不存在的。即便上述设备驱动都存在于Linux内核中,其基于的平台也可能与我们的电路板不一样。因此,工程师要实现的主要工作将包括:
- 6.1 提供I2C适配器的硬件驱动,探测、初始化I2C适配器(如申请I2C的I/O地址和中断号)、驱动CPU控制的I2C适配器从硬件上产生各种信号以及处理I2C中断等。
- 6.2 提供I2C适配器的algorithm,用具体适配器的xxx_xfer()函数填充i2c_algorithm的master_xfer指针,并把i2c_algorithm指针赋值给i2c_adapter的algo指针。
- 6.3 实现I2C设备驱动与i2c_driver接口,用具体设备yyy的yyy_attach_adapter()函数指针、 yyy_detach_client()函数指针和yyy_command()函数指针的赋值给i2c_driver的attach_adapter、 detach_adapter和detach_client指针。
- 6.4 实现I2C设备驱动的文件操作接口,即实现具体设备yyy的yyy_read()、yyy_write()和yyy_ioctl()函数等。
-
- 四、核心层提供的接口函数
- 1、增加/删除I2C适配器
- int i2c_add_adapter(struct i2c_adapter *adapter)
- int i2c_del_adapter(struct i2c_adapter *adap)
- 2、增加/删除I2C从设备驱动
- int i2c_register_driver(struct module *owner, structi2c_driver *driver)
- static inline int i2c_add_driver(struct i2c_driver *driver)
- void i2c_del_driver(struct i2c_driver *driver)
- //i2c_add_driver是对i2c_register_driver简单的封装
- 3、i2c传输,发送和接收
- int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg*msgs, int num)
- int i2c_master_send(const struct i2c_client *client, constchar *buf, int count)
- int i2c_master_recv(const struct i2c_client *client, char*buf, int count)
- //i2c_master_send和i2c_master_recv是i2c_transfer的封装
- //3.1.0的内核中已经没有i2c_attach_client和i2c_detach_client接口
- 4、I2C总线通信方法
- 我们需要为特定的I2C适配器实现其通信方法,主要实现i2c_algorithm结构体中的两个函数:
- struct i2c_algorithm {
- int(*master_xfer)(struct i2c_adapter *adap, struct i2c_msg *msgs, int num);
- u32(*functionality) (struct i2c_adapter *);
- };
- Functionality函数用于返回algorithm所支持的通信协议;
- Master_xfer函数在I2C适配器上完成数据的传输;
- //Master_xfer函数实现模板
- static int i2c_adapter_xxx_xfer(structi2c_adapter *adap, struct i2c_msg *msgs, int num)
- {
- ......
- for (i = 0; i < num; i++) {
- i2c_adapter_xxx_start(); /*产生起始位*/
- if (msgs[i]->flags & I2C_M_RD) { /*读取*/
- i2c_adapter_xxx_setaddr((msg->addr << 1) | 1); /*发送从设备地址*/
- i2c_adapter_xxx_wait_ack(); /*获得从设备的ACK*/
- i2c_adapter_xxx_readbytes(msgs[i]->buf,msgs[i]->len); /*读取len长度的数据到buf中*/
- } else {
- i2c_adapter_xxx_setaddr(msg->addr << 1);
- i2c_adapter_xxx_wait_ack();
- i2c_adapter_xxx_writebytes(msgs[i]->buf, msgs[i]->len);
- }
- }
- i2c_adapter_xxx_stop(); /*产生停止位*/
- }
- 我们来大致分析一下匹配的过程:
- 当调用i2c_add_driver函数向I2C总线(i2c-core.c文件中注册的”i2c”总线)增加一个i2c_driver时,会遍历总线中的所有i2c_client,
- 调用总线注册的match函数I2C适配器上是否有与i2c_driver匹配的i2c_client,如果匹配会调用I2C注册的probe函数,然后再调用i2c_driver定义的probe来进行关联和初始化工作。
-
- 五、i2c的初始化
- i2c子系统的初始化函数的执行先后顺序,结合vmlinux.lds和Makefile,可确定i2c初始化函数的执行顺序如下:
- 1./dricer/i2c/i2c-core.c中的函数:i2c_init()---------->postcore_initcall级别
-
- 2./arch/arm/mach-davinci/board-da850-evm.c中的函数:da850_evm_init()---------->arch_initcall级别
-
- 3.driver/i2c/buses/i2c-gpio.c中的函数:i2c_gpio_init()---------->subsys_initcall级别
-
- 4./driver/i2c/i2c-dev.c中的函数:i2c_dev_init()---------->module_init级别
-
-
- 1.在linux内核启动的时候最先执行的和I2C子系统相关的函数应该是driver/i2c/i2c-core.c文件中的i2c_init()函数。
- static int __init i2c_init(void)
- {
- int retval;
- //设备模型中,关心总线,设备,驱动这三个实体,总线将设备和驱动绑定,在系统每注册一个设备的时候,会寻找与之匹配的驱动。
- //相反,在系统每注册一个驱动的时候,寻找与之匹配的设备,匹配是由总线来完成的。 你还可以看一看链表的信息。它们都是关联的。
- retval = bus_register(&i2c_bus_type);//可以发现i2c_inti的函数主要功能就是注册i2c总线
- if (retval)
- return retval;
-
- retval = i2c_add_driver(&dummy_driver);
- if (retval)
- goto class_err;
- return 0;
-
- class_err:
- bus_unregister(&i2c_bus_type);
- return retval;
- }
- /*
- struct bus_type i2c_bus_type = {
- .name = "i2c",
- .match = i2c_device_match,
- .probe = i2c_device_probe,
- .remove = i2c_device_remove,
- .shutdown = i2c_device_shutdown,
- .pm = &i2c_device_pm_ops,
- };
- match方法的用来进行client device和client driver的配对。在向总线i2c_bus_type注册设备或者驱动时会调用此方法。
- probe方法在完成设备和驱动的配对后调用执行,i2c_bus_type的probe方法是通过传递进来的drv找到包含此drv的i2c_driver驱动,然后再去调用i2c_driver的probe方法,此处就是at24_probe。
- 为什么要这样呢?因为driver_register后,注册的是i2_driver->drv,而drv中的probe未初始化,我们需要调用的是i2c-driver的probe方法。
- */
- 2.设置i2c的复用管脚配置,以及注册platform设备
- 调用完函数i2c_init后,系统将成功创建i2c总线。初始化完毕总线后还需要接着初始化i2c设备和i2c驱动(一般是先初始化device),
- linux内核中的device初始化一般是通过platform device来初始化的,platform device的初始化在da850_evm_init().
- static __init void da850_evm_init(void)
- {
- int ret;
- char mask = 0;
- //在\arch\arm\mach-davinci\include\mach\common.h中定义davinci_soc_info结构。
- //而\arch\arm\mach-davinci\common.c中davinci_common_init()对其初始化。
- //davinci_soc_info真正的定义在\arch\arm\mach-davinci\da850.c中,定义达芬奇架构的各类资源的地址等
- struct davinci_soc_info *soc_info = &davinci_soc_info;
-
- //......
- /*const short da850_i2c0_pins[] __initdata = {
- DA850_GPIO1_4, DA850_GPIO1_5,
- -1
- };
- */
- ret = davinci_cfg_reg_list(da850_i2c0_pins);//i2c的复用管脚配置
- if (ret)
- pr_warning("da850_evm_init: i2c0 mux setup failed: %d\n",ret);
-
- /*
- static struct i2c_gpio_platform_data da850_gpio_i2c_pdata = {
- .sda_pin = GPIO_TO_PIN(1, 4),//20 #define GPIO_TO_PIN(bank, gpio) (16 * (bank) + (gpio))
- .scl_pin = GPIO_TO_PIN(1, 5),//21
- .udelay = 2,//250 KHz
- //.sda_is_open_drain =1, //未设置
- //.scl_is_open_drain =1, //未设置
- //.scl_is_output_only =1, //未设置
- };
-
- static struct platform_device da850_gpio_i2c = {
- .name = "i2c-gpio",
- .id = 1,
- .dev = {
- .platform_data = &da850_gpio_i2c_pdata,
- },
- };
- */
- platform_device_register(&da850_gpio_i2c);//注册i2c对应的platform设备
-
- //......
- }
-
- 3.在完成platform_device的添加之后,i2c子系统将进行platform_driver的注册过程。platform_driver的注册通过调用初始化函数i2c_gpio_init()函数来完成。
- static int __init i2c_gpio_init(void)
- {
- int ret;
- /*
- static struct platform_driver i2c_gpio_driver = {
- .driver = {
- .name = "i2c-gpio",
- .owner = THIS_MODULE,
- },
- .probe = i2c_gpio_probe,
- .remove = __devexit_p(i2c_gpio_remove),
- };
- */
- //注册i2c设备对应的platform驱动,会调用i2c_gpio_probe
- ret = platform_driver_register(&i2c_gpio_driver);
- if (ret)
- printk(KERN_ERR "i2c-gpio: probe failed: %d\n", ret);
-
- return ret;
- }
-
- //3.1 platform_driver在注册到platform_bus总线的过程中会尝试将已注册的platform_driver与已注册到platform_bus上的所有platform_device进行配对。
- //配对过程通过调用总线的match方法实现,即platform_match函数.就是根据platfor_device和platform_driver的名字来实现配对。
- //但是platform_driver有好几个名字可以选择,通过id_table来实现配对。
- //执行到此处,之前已注册到platform_bus的platform_device型设备da850_gpio_i2c和现在刚注册到platform_bus总线的platfor_drver型驱动i2c_gpio_driver将实现配对成功。
- //因为他们的名字都是“i2c-gpio”。
- //3.2 成功配对之后将尝试进行probe。成功配对后首先调用的是总线的probe,假如总线未初始化probe方法才会去 调用驱动中的probe,即platform_driver.drv->probe,
- //而platform_bus本身未初始化probe方法,所以此处调用驱动的probe方法,驱动的probe在注册过程中已被初始化。即i2c_gpio_probe()。
-
- static int __devinit i2c_gpio_probe(struct platform_device *pdev)
- {
- //传入的platform_device就是前边已经注册过的da850_gpio_i2c
- struct i2c_gpio_platform_data *pdata;
- struct i2c_algo_bit_data *bit_data;
- struct i2c_adapter *adap;
- int ret;
-
- /*这个结构体主要描述gpio模拟i2c总线,sda_pin和scl_pin表示使用哪两个IO管脚来模拟I2C总线,
- udelay和timeout分别为它的时钟频率和超时时间,sda_is_open_drain和scl_is_open_drain表示sda、scl这两个管脚是否是开漏(opendrain)电路,
- 如果是设置为1,scl_is_output_only表示scl这个管脚是否只是作为输出,如果是设置为1。
- static struct i2c_gpio_platform_data da850_gpio_i2c_pdata = {
- .sda_pin = GPIO_TO_PIN(1, 4),//20
- .scl_pin = GPIO_TO_PIN(1, 5),//21
- .udelay = 2,//250 KHz
- };
- */
- pdata = pdev->dev.platform_data;//得到设备的i2c_gpio_platform_data结构
- if (!pdata)
- return -ENXIO;
-
- ret = -ENOMEM;
- adap = kzalloc(sizeof(struct i2c_adapter), GFP_KERNEL);//分配适配器i2c_adapter结构空间
- if (!adap)
- goto err_alloc_adap;
-
- bit_data = kzalloc(sizeof(struct i2c_algo_bit_data), GFP_KERNEL);//申请空间,这个结构主要用来定义对GPIO管脚的一些操作
- if (!bit_data)
- goto err_alloc_bit_data;
-
- //使用gpio_request去申请这个两个GPIO管脚,申请的目的是为了防止重复使用管脚。
- //然后是根据struct i2c_gpio_platform_data结构中定义的后面三个数据对struct i2c_algo_bit_data结构中的函数指针做一些赋值操作
- ret = gpio_request(pdata->sda_pin, "sda");//向全局数组gpio_desc[]申请一个gpio,并设置对应的标志FLAG_REQUESTED表示申请。并取名为sda
- if (ret)
- goto err_request_sda;
- ret = gpio_request(pdata->scl_pin, "scl");//同上
- if (ret)
- goto err_request_scl;
-
- //然后是根据struct i2c_gpio_platform_data结构中定义的后面三个数据对struct i2c_algo_bit_data结构中的函数指针做一些赋值操作
- if (pdata->sda_is_open_drain) {//未设置
- gpio_direction_output(pdata->sda_pin, 1);
- bit_data->setsda = i2c_gpio_setsda_val;
- } else {
- gpio_direction_input(pdata->sda_pin);//设置为输入
- bit_data->setsda = i2c_gpio_setsda_dir;//设置sda管脚的方向函数
- }
-
- if (pdata->scl_is_open_drain || pdata->scl_is_output_only) {//未设置
- gpio_direction_output(pdata->scl_pin, 1);
- bit_data->setscl = i2c_gpio_setscl_val;
- } else {
- gpio_direction_input(pdata->scl_pin);//设置为输入
- bit_data->setscl = i2c_gpio_setscl_dir;//设置scl管脚的方向
- }
-
- if (!pdata->scl_is_output_only)//未设置
- bit_data->getscl = i2c_gpio_getscl;
-
- bit_data->getsda = i2c_gpio_getsda;//读sda管脚数据的函数
-
- //I2C时钟频率设置
- if (pdata->udelay)//2,即250 KHz
- bit_data->udelay = pdata->udelay;
- else if (pdata->scl_is_output_only)
- bit_data->udelay = 50;//10 kHz
- else
- bit_data->udelay = 5;//100 kHz
-
- //I2C超时设置
- if (pdata->timeout)
- bit_data->timeout = pdata->timeout;
- else
- bit_data->timeout = HZ / 10;//100 ms
-
- bit_data->data = pdata;//i2c_gpio_platform_data结构
-
- //初始化i2c_adapter结构
- adap->owner = THIS_MODULE;
- snprintf(adap->name, sizeof(adap->name), "i2c-gpio%d", pdev->id);//设置adapter的名称:i2c-gpio1
- adap->algo_data = bit_data;//通信算法的数据
- adap->class = I2C_CLASS_HWMON | I2C_CLASS_SPD;
- adap->dev.parent = &pdev->dev;//父设备指向platform_device
-
- //pdev->id = 1,表示总线号
- adap->nr = (pdev->id != -1) ? pdev->id : 0;
-
- //继续初始化i2c_adapter结构,设置通信方法,然后在i2c-core中注册适配器。
- ret = i2c_bit_add_numbered_bus(adap);
- if (ret)
- goto err_add_bus;
-
- //保存i2c_adapter结构到pdev???
- platform_set_drvdata(pdev, adap);
-
- dev_info(&pdev->dev, "using pins %u (SDA) and %u (SCL%s)\n",pdata->sda_pin, pdata->scl_pin,pdata->scl_is_output_only? ", no clock stretching" : "");
-
- return 0;
-
- err_add_bus:
- gpio_free(pdata->scl_pin);
- err_request_scl:
- gpio_free(pdata->sda_pin);
- err_request_sda:
- kfree(bit_data);
- err_alloc_bit_data:
- kfree(adap);
- err_alloc_adap:
- return ret;
- }
-
- int i2c_bit_add_numbered_bus(struct i2c_adapter *adap)
- {
- int err;
-
- //初始化i2c_adapter的通信方法
- err = i2c_bit_prepare_bus(adap);
- if (err)
- return err;
-
- return i2c_add_numbered_adapter(adap);//注册adapter
- }
-
- static int i2c_bit_prepare_bus(struct i2c_adapter *adap)
- {
- struct i2c_algo_bit_data *bit_adap = adap->algo_data;
-
- if (bit_test) {//bit_test =0
- int ret = test_bus(bit_adap, adap->name);
- if (ret < 0)
- return -ENODEV;
- }
-
- /* static const struct i2c_algorithm i2c_bit_algo = {
- .master_xfer = bit_xfer,//数据传输函数
- .functionality = bit_func,
- };
- */
- //设置i2c_adapter的通信方法
- adap->algo = &i2c_bit_algo;
- adap->retries = 3;
-
- return 0;
- }
-
- int i2c_add_numbered_adapter(struct i2c_adapter *adap)
- {
- int id;
- int status;
-
- if (adap->nr & ~MAX_ID_MASK)//adap->nr=1
- return -EINVAL;
-
- retry:
- /*
- 在这里涉及到一个idr结构。idr结构本来是为了配合page cache中的radix tree而设计的。在这里我们只需要知道,它是一种高效的搜索树,且这个树预先存放了一些内存。避免在内存不够的时候出现问题。所以,在往idr中插入结构的时候,首先要调用idr_pre_get()为它预留足够的空闲内存,然后再调用idr_get_new_above()将结构插入idr中,该函数以参数的形式返回一个id.以后凭这个id就可以在idr中找到相对应的结构了。
- */
- if (idr_pre_get(&i2c_adapter_idr, GFP_KERNEL) == 0)
- return -ENOMEM;
-
- mutex_lock(&core_lock);//上锁
-
- //它是将adapter结构插入到i2c_adapter_idr中,存放位置的id必须要大于或者等于adap->nr,然后将对应的id号存放在adapter->nr中
- status = idr_get_new_above(&i2c_adapter_idr, adap, adap->nr, &id);
- if (status == 0 && id != adap->nr) {
- status = -EBUSY;
- idr_remove(&i2c_adapter_idr, id);
- }
- mutex_unlock(&core_lock);//解锁
- if (status == -EAGAIN)
- goto retry;
-
- if (status == 0)
- status = i2c_register_adapter(adap);//对这个adapter进行进一步注册。
- return status;
- }
-
- static int i2c_register_adapter(struct i2c_adapter *adap)
- {
- int res = 0;
-
- if (unlikely(WARN_ON(!i2c_bus_type.p))) {
- res = -EAGAIN;
- goto out_list;
- }
-
- /* Sanity checks */
- if (unlikely(adap->name[0] == '\0')) {//adapter的name不为空
- pr_err("i2c-core: Attempt to register an adapter with ""no name!\n");
- return -EINVAL;
- }
- if (unlikely(!adap->algo)) {//adapter的通信算法不能为空
- pr_err("i2c-core: Attempt to register adapter '%s' with ""no algo!\n", adap->name);
- return -EINVAL;
- }
-
- rt_mutex_init(&adap->bus_lock);
- mutex_init(&adap->userspace_clients_lock);
- INIT_LIST_HEAD(&adap->userspace_clients);
-
- //若没设置超时时间,则缺省为HZ。实际已经设置
- if (adap->timeout == 0)
- adap->timeout = HZ;
-
- //adapter中内嵌的struct device结构进行必须的初始化
- dev_set_name(&adap->dev, "i2c-%d", adap->nr);//设置adapter->dev的设备名:i2c-1
- adap->dev.bus = &i2c_bus_type;//adapter中内嵌的struct device所在总线为i2c_bus_type
- adap->dev.type = &i2c_adapter_type;
-
- //adapter内嵌的struct device注册
- res = device_register(&adap->dev);
- if (res)
- goto out_list;
-
- dev_dbg(&adap->dev, "adapter [%s] registered\n", adap->name);
-
- //调用此函数i2c_scan_static_board_info之前,必须要调用i2c_register_board_info()将板子上的I2C设备信息预先注册到__i2c_board_list链表中,
- //同时才会更改__i2c_first_dynamic_bus_num的值
- if (adap->nr < __i2c_first_dynamic_bus_num)//__i2c_first_dynamic_bus_num=0,adap->nr=1,不会调用下边的函数
- i2c_scan_static_board_info(adap);//遍历__i2c_board_list中挂载的i2c_devinfo结构,每个都是一个i2c_client即i2c设备。
- //若i2c设备(i2c_client)与adapter位于同一i2c总线上,则调用i2c_new_device()进行i2c设备(i2c_client)注册
- /* Notify drivers */
- mutex_lock(&core_lock);
- //在新的适配器加入内核时调用函数 bus_for_each_drv时调用的函数。
- //函数bus_for_each_drv是在总线类型为i2c_bus_type的驱动中找到一个驱动与新加入的适配器匹配。
- bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_new_adapter);//遍历该总线上所有的driver,并设用attach_adapter,因为i2c_driver还没注册,
- //attach_adapter为空,设置会调用失败。
- mutex_unlock(&core_lock);
-
- return 0;
-
- out_list:
- mutex_lock(&core_lock);
- idr_remove(&i2c_adapter_idr, adap->nr);
- mutex_unlock(&core_lock);
- return res;
- }
-
- static int __process_new_adapter(struct device_driver *d, void *data)
- {
- return i2c_do_add_adapter(to_i2c_driver(d), data);
- }
-
- static int i2c_do_add_adapter(struct i2c_driver *driver,struct i2c_adapter *adap)
- {
- i2c_detect(adap, driver);
-
- if (driver->attach_adapter) {//这里还没有设置attach_adapter字段,所以下边的函数不会执行
- driver->attach_adapter(adap);
- }
- return 0;
- }
-
- //这个函数比较简单, struct i2c_board_info用来表示I2C设备的一些情况,比如所在的总线。名称,地址,中断号等。最后,这些信息会被存放到__i2c_board_list链表。
- /*
- static struct i2c_board_info __initdata da850_evm_i2c_devices[] = {
- {
- I2C_BOARD_INFO("24c256", 0x50),
- .platform_data = &da850_evm_i2c_eeprom_info,
- },
- {
- I2C_BOARD_INFO("tlv320aic3x", 0x18),
- },
-
- {
- I2C_BOARD_INFO("tca6416", 0x20),
- .platform_data = &da850_evm_ui_expander_info,
- },
- {
- I2C_BOARD_INFO("tca6416", 0x21),
- .platform_data = &da850_evm_bb_expander_info,
- },
-
- {
- I2C_BOARD_INFO("tps6507x", 0x48),
- .platform_data = &tps_board,
- },
- {
- I2C_BOARD_INFO("cdce913", 0x65),
- },
- {
- I2C_BOARD_INFO("PCA9543A", 0x73),
- },
- };
- */
- int __init i2c_register_board_info(int busnum,struct i2c_board_info const *info, unsigned len)
- {
- int status;
- mutex_lock(&__i2c_board_lock);
-
- if (busnum >= __i2c_first_dynamic_bus_num)
- __i2c_first_dynamic_bus_num = busnum + 1;
-
- for (status = 0; len; len--, info++) {
- struct i2c_devinfo *devinfo;
- devinfo = kzalloc(sizeof(*devinfo), GFP_KERNEL);
- if (!devinfo) {
- pr_debug("i2c-core: can't register boardinfo!\n");
- status = -ENOMEM;
- break;
- }
- devinfo->busnum = busnum;
- devinfo->board_info = *info;
- list_add_tail(&devinfo->list, &__i2c_board_list);
- }
- mutex_unlock(&__i2c_board_lock);
- return status;
- }
-
- static void i2c_scan_static_board_info(struct i2c_adapter *adapter)
- {
- struct i2c_devinfo *devinfo;
-
- down_read(&__i2c_board_lock);
- list_for_each_entry(devinfo, &__i2c_board_list, list) {//遍历__i2c_board_list链表中挂载的i2c_devinfo结构
- //如果指定设备是位于adapter所在的I2C总线上,那么,就调用i2c_new_device()。
- if (devinfo->busnum == adapter->nr && !i2c_new_device(adapter,&devinfo->board_info))//adapter->nr = 1
- dev_err(&adapter->dev,"Can't create device at 0x%02x\n",devinfo->board_info.addr);
- }
- up_read(&__i2c_board_lock);
- }
-
- struct i2c_client *i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info)
- {
- struct i2c_client *client;
- int status;
-
- //i2c_client表示一个具体的I2C设备,就是一个嵌入struct device的I2C设备的封装
- client = kzalloc(sizeof *client, GFP_KERNEL);//分配空间
- if (!client)
- return NULL;
- //client->adapter指向了它所在的adapter
- client->adapter = adap;
- //
- client->dev.platform_data = info->platform_data;
-
- if (info->archdata)
- client->dev.archdata = *info->archdata;
-
- //设置标志,地址以及中断号
- client->flags = info->flags;
- client->addr = info->addr;
- client->irq = info->irq;
-
- //设置i2c设备名
- strlcpy(client->name, info->type, sizeof(client->name));
-
- //检查设备地址的有效性
- status = i2c_check_client_addr_validity(client);
- if (status) {
- dev_err(&adap->dev, "Invalid %d-bit I2C address 0x%02hx\n",client->flags & I2C_CLIENT_TEN ? 10 : 7, client->addr);
- goto out_err_silent;
- }
-
- /* Check for address business */
- status = i2c_check_addr_busy(adap, client->addr);
- if (status)
- goto out_err;
-
- client->dev.parent = &client->adapter->dev;
- client->dev.bus = &i2c_bus_type;
- client->dev.type = &i2c_client_type;
- #ifdef CONFIG_OF
- client->dev.of_node = info->of_node;
- #endif
- //设置i2c设备的名称
- dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap),client->addr);
- //将i2c设备内嵌的dev注册
- status = device_register(&client->dev);
- if (status)
- goto out_err;
-
- dev_dbg(&adap->dev, "client [%s] registered with bus id %s\n",client->name, dev_name(&client->dev));
- return client;
-
- out_err:
- dev_err(&adap->dev, "Failed to register i2c client %s at 0x%02x ""(%d)\n", client->name, client->addr, status);
- out_err_silent:
- kfree(client);
- return NULL;
- }
-
- 4.运行i2c_dev_init函数,注册设备,注册设备驱动,以_init为头的函数,在运行过后系统将回收其内存
- //前边已经注册了adapter设备device_register(&adap->dev);下边要注册设备的驱动i2c_add_driver(&i2cdev_driver);
- //驱动注册成功会和前边才注册的adapter设备相匹配i2cdev_attach_adapter(),匹配成功则创建设备文件。
- static int __init i2c_dev_init(void)
- {
- int res;
-
- printk(KERN_INFO "i2c /dev entries driver\n");
-
- //register_chrdev函数最终会向系统注册主设备为I2C_MAJOR,此设备号为0~255的设备。这表示系统最多可以容纳256个i2c adapter,其中注册的结构体&i2cdev_fops,给用户空间提供了调用接口,就是个字符型驱动
- /*当read()、write()、open()、close()、ioctl()等系统调用发生时就会调用到这些函数。
- static const struct file_operations i2cdev_fops = {
- .owner = THIS_MODULE,
- .llseek = no_llseek,
- .read = i2cdev_read,
- .write = i2cdev_write,
- .unlocked_ioctl = i2cdev_ioctl,
- .open = i2cdev_open,
- .release = i2cdev_release,
- };
- */
- res = register_chrdev(I2C_MAJOR, "i2c", &i2cdev_fops);
- if (res)
- goto out;
-
- //创建设备类,字符设备注册完毕后通过class_create()函数初始化一个类i2c_dev_class,这个类稍后需要使用,用于在/dev/i2c-0下自动创建设备.
- //注册一个类,使i2c可以在"/dev/"目录下 面建立设备节点
- i2c_dev_class = class_create(THIS_MODULE, "i2c-dev");
- if (IS_ERR(i2c_dev_class)) {
- res = PTR_ERR(i2c_dev_class);
- goto out_unreg_chrdev;
- }
-
- //调用函数i2c_add_driver函数注册i2c driver。这里所说的i2c其实对应的是系统中所有的i2c类设备(包括i2c_client and adapter)。
- /*
- static struct i2c_driver i2cdev_driver = {
- .driver = {
- .name = "dev_driver",
- },
- .attach_adapter = i2cdev_attach_adapter,
- .detach_adapter = i2cdev_detach_adapter,
- };
-
- */
- //其作用在于为系统中所有已安装的i2c适配器调用i2cdev_driver的attach_adpter方法,
- //即i2cdev_attach_adapter函数,为所有已安装的适配器创建相应的/dev/i2c-%d字符设备结点并注册设备访问方法。
- res = i2c_add_driver(&i2cdev_driver);
- if (res)
- goto out_unreg_class;
-
- return 0;
-
- out_unreg_class:
- class_destroy(i2c_dev_class);
- out_unreg_chrdev:
- unregister_chrdev(I2C_MAJOR, "i2c");
- out:
- printk(KERN_ERR "%s: Driver Initialisation failed\n", __FILE__);
- return res;
- }
-
- static inline int i2c_add_driver(struct i2c_driver *driver)
- {
- return i2c_register_driver(THIS_MODULE, driver);
- }
-
- int i2c_register_driver(struct module *owner, struct i2c_driver *driver)
- {
- int res;
-
- /* Can't register until after driver model init */
- if (unlikely(WARN_ON(!i2c_bus_type.p)))
- return -EAGAIN;
-
- //关联到i2c_bus_types
- driver->driver.owner = owner;
- driver->driver.bus = &i2c_bus_type;
-
- //注册i2c_driver结构中内嵌的device_driver
- res = driver_register(&driver->driver);
- if (res)
- return res;
-
- pr_debug("i2c-core: driver [%s] registered\n", driver->driver.name);
-
- INIT_LIST_HEAD(&driver->clients);
- /* Walk the adapters that are already present */
- mutex_lock(&core_lock);
- bus_for_each_dev(&i2c_bus_type, NULL, driver, __process_new_driver);//遍历i2c_bus_type总线上所有的设备,与新加入的驱动相匹配,并调用驱动的attach_adapter
- mutex_unlock(&core_lock);
-
- return 0;
- }
-
- static int __process_new_driver(struct device *dev, void *data)
- {
- if (dev->type != &i2c_adapter_type)
- return 0;
- //前边adapter的dev已经注册,这里会找到注册的i2c_adapter设备
- return i2c_do_add_adapter(data, to_i2c_adapter(dev));
- }
-
- static int i2c_do_add_adapter(struct i2c_driver *driver,struct i2c_adapter *adap)
- {
- i2c_detect(adap, driver);//空函数
-
- if (driver->attach_adapter) {
- driver->attach_adapter(adap);//调用i2cdev_attach_adapter()
- }
- return 0;
- }
-
- static int i2cdev_attach_adapter(struct i2c_adapter *adap)
- {
- struct i2c_dev *i2c_dev;
- int res;
-
- i2c_dev = get_free_i2c_dev(adap);//创建一个i2c_dev结构,并且指向adap( i2c_dev->adap = adap;)
- if (IS_ERR(i2c_dev))
- return PTR_ERR(i2c_dev);
-
- /* 可见attach_adapter函数的作用就是调用device_create()函数 通过之前class_create的类信息在/dev下自动创建设备文件。
- 并且此设备的设备号是由固定的主设备号I2C_MAJOR 和 从设备号组成的,从设备号取的就是adapter的nr,此处为0。
- 并且可以推断出系统最多可以容纳0~255 总共256个i2c adapter。
- */
- //创建一个设备节点,节点名为"i2c-1"
- i2c_dev->dev = device_create(i2c_dev_class, &adap->dev,MKDEV(I2C_MAJOR, adap->nr), NULL,"i2c-%d", adap->nr);
- if (IS_ERR(i2c_dev->dev)) {
- res = PTR_ERR(i2c_dev->dev);
- goto error;
- }
- res = device_create_file(i2c_dev->dev, &dev_attr_name);
- if (res)
- goto error_destroy;
-
- pr_debug("i2c-dev: adapter [%s] registered as minor %d\n",adap->name, adap->nr);
- return 0;
- error_destroy:
- device_destroy(i2c_dev_class, MKDEV(I2C_MAJOR, adap->nr));
- error:
- return_i2c_dev(i2c_dev);
- return res;
- }
- 六、i2c的打开、读、写
- 初始化过后就可以通过用户空间对i2c进行读写。
- 6.1 i2c的打开
- static int i2cdev_open(struct inode *inode, struct file *file)
- {
- unsigned int minor = iminor(inode);
- struct i2c_client *client;
- struct i2c_adapter *adap;
- struct i2c_dev *i2c_dev;
-
- i2c_dev = i2c_dev_get_by_minor(minor);
- if (!i2c_dev)
- return -ENODEV;
-
- adap = i2c_get_adapter(i2c_dev->adap->nr);
- if (!adap)
- return -ENODEV;
-
- client = kzalloc(sizeof(*client), GFP_KERNEL);
- if (!client) {
- i2c_put_adapter(adap);
- return -ENOMEM;
- }
- snprintf(client->name, I2C_NAME_SIZE, "i2c-dev %d", adap->nr);
- client->driver = &i2cdev_driver;//设备驱动(adapter 也是这个设备驱动,共用)
-
- client->adapter = adap;
- file->private_data = client;//保存到文件的private_data字段中
-
- return 0;
- }
-
- 6.2 i2c的读数据
- static ssize_t i2cdev_read(struct file *file, char __user *buf, size_t count,loff_t *offset)
- {
- char *tmp;
- int ret;
-
- struct i2c_client *client = file->private_data;
-
- if (count > 8192)
- count = 8192;
-
- tmp = kmalloc(count, GFP_KERNEL);
- if (tmp == NULL)
- return -ENOMEM;
-
- pr_debug("i2c-dev: i2c-%d reading %zu bytes.\n",iminor(file->f_path.dentry->d_inode), count);
-
- ret = i2c_master_recv(client, tmp, count);
- if (ret >= 0)
- ret = copy_to_user(buf, tmp, count) ? -EFAULT : ret;
- kfree(tmp);
- return ret;
- }
-
- int i2c_master_recv(struct i2c_client *client, char *buf, int count)
- {
- struct i2c_adapter *adap = client->adapter;
- struct i2c_msg msg;
- int ret;
-
- msg.addr = client->addr;//应用程序会通过ioctl(i2c_fd,I2C_SLAVE,slaveaddr)来设置client的地址
- msg.flags = client->flags & I2C_M_TEN;
- msg.flags |= I2C_M_RD;
- msg.len = count;
- msg.buf = buf;
-
- ret = i2c_transfer(adap, &msg, 1);//传输1个msg
-
- return (ret == 1) ? count : ret;
- }
-
- int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
- {
- unsigned long orig_jiffies;
- int ret, try;
-
- if (adap->algo->master_xfer) {//存在通信方法
- if (in_atomic() || irqs_disabled()) {
- ret = i2c_trylock_adapter(adap);
- if (!ret)/* I2C activity is ongoing. */
- return -EAGAIN;
- } else {
- i2c_lock_adapter(adap);//给adapter上锁
- }
-
- orig_jiffies = jiffies;
- for (ret = 0, try = 0; try <= adap->retries; try++) {
- ret = adap->algo->master_xfer(adap, msgs, num);//最终转换为i2c_algorithm中的master_xfer传输,调用bit_xfer()
- if (ret != -EAGAIN)
- break;
- if (time_after(jiffies, orig_jiffies + adap->timeout))//retry间隔时间
- break;
- }
- i2c_unlock_adapter(adap);//给adapter解锁
-
- return ret;
- } else {
- dev_dbg(&adap->dev, "I2C level transfers not supported\n");
- return -EOPNOTSUPP;
- }
- }
-
- static int bit_xfer(struct i2c_adapter *i2c_adap,struct i2c_msg msgs[], int num)
- {
- struct i2c_msg *pmsg;
- struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
- int i, ret;
- unsigned short nak_ok;
-
- if (adap->pre_xfer) {//这个字段没有设置
- ret = adap->pre_xfer(i2c_adap);
- if (ret < 0)
- return ret;
- }
-
- bit_dbg(3, &i2c_adap->dev, "emitting start condition\n");
-
- /*发送起始信号*/
- i2c_start(adap);
- for (i = 0; i < num; i++) {//这里的num代表有几个struct i2c_msg
- pmsg = &msgs[i];
- nak_ok = pmsg->flags & I2C_M_IGNORE_NAK;
- /*
- I2C_M_NOSTART标志,这个标志主要用于写操作时,不必重新发送起始信号和设备地址,但是对于读操作就不同了,
- 要调用i2c_repstart这个函数去重新发送起始信号,调用bit_doAddress函数去重新构造设备地址字节
- */
- if (!(pmsg->flags & I2C_M_NOSTART)) {
- if (i) {
- bit_dbg(3, &i2c_adap->dev, "emitting ""repeated start condition\n");
- i2c_repstart(adap);
- }
- ret = bit_doAddress(i2c_adap, pmsg);//重新构造设备地址字节
- if ((ret != 0) && !nak_ok) {
- bit_dbg(1, &i2c_adap->dev, "NAK from ""device addr 0x%02x msg #%d\n",msgs[i].addr, i);
- goto bailout;
- }
- }
-
- if (pmsg->flags & I2C_M_RD) {//读数据
- ret = readbytes(i2c_adap, pmsg);
- if (ret >= 1)
- bit_dbg(2, &i2c_adap->dev, "read %d byte%s\n",ret, ret == 1 ? "" : "s");
- if (ret < pmsg->len) {
- if (ret >= 0)
- ret = -EREMOTEIO;
- goto bailout;
- }
- } else {//写数据
- ret = sendbytes(i2c_adap, pmsg);
- if (ret >= 1)
- bit_dbg(2, &i2c_adap->dev, "wrote %d byte%s\n",ret, ret == 1 ? "" : "s");
- if (ret < pmsg->len) {
- if (ret >= 0)
- ret = -EREMOTEIO;
- goto bailout;
- }
- }
- }
- ret = i;
-
- bailout:
- bit_dbg(3, &i2c_adap->dev, "emitting stop condition\n");
- i2c_stop(adap);
-
- if (adap->post_xfer)
- adap->post_xfer(i2c_adap);
- return ret;
- }
-
- 这里先做了一个判断,10位设备地址和7位设备地址分别做不同的处理,通常一条I2C总线上不会挂那么多I2C设备,所以10位地址不常用,直接看对7位地址的处理。struct i2c_msg中addr中是真正的设备地址,而这里发送的addr高7位才是设备地址,最低位为读写位,如果为读,最低位为1,如果为写,最低位为0。所以要将struct i2c_msg中addr向左移1位,如果定义了I2C_M_RD标志,就将addr或上1,前面就说过,这个标志就代表读,如果是写,这里就不用处理,因为最低位本身就是0。最后调用try_address函数将这个地址字节发送出去。
- static int bit_doAddress(struct i2c_adapter *i2c_adap, struct i2c_msg *msg)
- {
- unsigned short flags = msg->flags;
- unsigned short nak_ok = msg->flags & I2C_M_IGNORE_NAK;
- struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
-
- unsigned char addr;
- int ret, retries;
-
- retries = nak_ok ? 0 : i2c_adap->retries;
-
- if (flags & I2C_M_TEN) {
- /* a ten bit address */
- addr = 0xf0 | ((msg->addr >> 7) & 0x03);
- bit_dbg(2, &i2c_adap->dev, "addr0: %d\n", addr);
- /* try extended address code...*/
- ret = try_address(i2c_adap, addr, retries);
- if ((ret != 1) && !nak_ok) {
- dev_err(&i2c_adap->dev,
- "died at extended address code\n");
- return -EREMOTEIO;
- }
- /* the remaining 8 bit address */
- ret = i2c_outb(i2c_adap, msg->addr & 0x7f);
- if ((ret != 1) && !nak_ok) {
- /* the chip did not ack / xmission error occurred */
- dev_err(&i2c_adap->dev, "died at 2nd address code\n");
- return -EREMOTEIO;
- }
- if (flags & I2C_M_RD) {
- bit_dbg(3, &i2c_adap->dev, "emitting repeated "
- "start condition\n");
- i2c_repstart(adap);
- /* okay, now switch into reading mode */
- addr |= 0x01;
- ret = try_address(i2c_adap, addr, retries);
- if ((ret != 1) && !nak_ok) {
- dev_err(&i2c_adap->dev,
- "died at repeated address code\n");
- return -EREMOTEIO;
- }
- }
- } else { /* normal 7bit address */
- addr = msg->addr << 1;
- if (flags & I2C_M_RD)
- addr |= 1;
- if (flags & I2C_M_REV_DIR_ADDR)
- addr ^= 1;
- ret = try_address(i2c_adap, addr, retries);
- if ((ret != 1) && !nak_ok)
- return -ENXIO;
- }
-
- return 0;
- }
-
- //最主要的就是调用i2c_outb发送一个字节,retries为重复次数,看前面adap->retries= 3;
- //如果发送失败,也就是设备没有给出应答信号,那就发送停止信号,发送起始信号,再发送这个地址字节,这就叫retries。
- static int try_address(struct i2c_adapter *i2c_adap,unsigned char addr, int retries)
- {
- struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
- int i, ret = 0;
-
- for (i = 0; i <= retries; i++) {
- ret = i2c_outb(i2c_adap, addr);
- if (ret == 1 || i == retries)
- break;
- bit_dbg(3, &i2c_adap->dev, "emitting stop condition\n");
- i2c_stop(adap);
- udelay(adap->udelay);
- yield();
- bit_dbg(3, &i2c_adap->dev, "emitting start condition\n");
- i2c_start(adap);
- }
- if (i && ret)
- bit_dbg(1, &i2c_adap->dev, "Used %d tries to %s client at ""0x%02x: %s\n", i + 1,addr & 1 ? "read from" : "write to", addr >> 1,ret == 1 ? "success" : "failed, timeout?");
- return ret;
- }
- static int readbytes(struct i2c_adapter *i2c_adap, struct i2c_msg *msg)
- {
- int inval;
- int rdcount = 0; /* counts bytes read */
- unsigned char *temp = msg->buf;
- int count = msg->len;
- const unsigned flags = msg->flags;
-
- while (count > 0) {
- inval = i2c_inb(i2c_adap);
- if (inval >= 0) {
- *temp = inval;
- rdcount++;
- } else { /* read timed out */
- break;
- }
-
- temp++;
- count--;
-
- /* Some SMBus transactions require that we receive the
- transaction length as the first read byte. */
- if (rdcount == 1 && (flags & I2C_M_RECV_LEN)) {
- if (inval <= 0 || inval > I2C_SMBUS_BLOCK_MAX) {
- if (!(flags & I2C_M_NO_RD_ACK))
- acknak(i2c_adap, 0);
- dev_err(&i2c_adap->dev, "readbytes: invalid ""block length (%d)\n", inval);
- return -EREMOTEIO;
- }
-
- count += inval;
- msg->len += inval;
- }
-
- bit_dbg(2, &i2c_adap->dev, "readbytes: 0x%02x %s\n",inval,(flags & I2C_M_NO_RD_ACK)? "(no ack/nak)": (count ? "A" : "NA"));
-
- if (!(flags & I2C_M_NO_RD_ACK)) {
- inval = acknak(i2c_adap, count);
- if (inval < 0)
- return inval;
- }
- }
- return rdcount;
- }
- 6.3 i2c的写数据
-
- static ssize_t i2cdev_write(struct file *file, const char __user *buf,size_t count, loff_t *offset)
- {
- int ret;
- char *tmp;
- struct i2c_client *client = file->private_data;
-
- if (count > 8192)
- count = 8192;
-
- tmp = memdup_user(buf, count);
- if (IS_ERR(tmp))
- return PTR_ERR(tmp);
-
- pr_debug("i2c-dev: i2c-%d writing %zu bytes.\n",iminor(file->f_path.dentry->d_inode), count);
-
- ret = i2c_master_send(client, tmp, count);
- kfree(tmp);
- return ret;
- }
-
- int i2c_master_send(struct i2c_client *client, const char *buf, int count)
- {
- int ret;
- struct i2c_adapter *adap = client->adapter;
- struct i2c_msg msg;
-
- msg.addr = client->addr;
- msg.flags = client->flags & I2C_M_TEN;
- msg.len = count;
- msg.buf = (char *)buf;
-
- ret = i2c_transfer(adap, &msg, 1);
-
- return (ret == 1) ? count : ret;
- }
linux GPIO-i2c驱动
最新推荐文章于 2025-02-23 08:00:00 发布