struct TreeNode_p {
int val;
TreeNode_p *left;
TreeNode_p *right;
TreeNode_p *parent;
TreeNode_p(int x) : val(x), left(NULL), right(NULL),parent(NULL) {}
};
二叉搜索树搜索
TreeNode_p *tree_search(TreeNode_p * tree,int k) {
if (tree == NULL || k == tree->val) {
return tree;
}
if(k<tree->val)
{
tree_search(tree->left, k);
}
else
{
tree_search(tree->right, k);
}
}
int main()
{
TreeNode_p *r1 = new TreeNode_p(15);
TreeNode_p *r2 = new TreeNode_p(6);
TreeNode_p *r3 = new TreeNode_p(18);
TreeNode_p *r4 = new TreeNode_p(3);
TreeNode_p *r5 = new TreeNode_p(7);
r1->left = r2;
r1->right = r3;
r2->parent = r1;
r2->left = r4;
r2->right = r5;
r3->parent = r1;
r4->parent = r2;
r5->parent = r2;
TreeNode_p *result = tree_search(r1, 18);
cout << result->val;
}
最大最小结点
/*求二叉搜索树最小结点*/
TreeNode_p *tree_minimum(TreeNode_p * tree) {
if (tree->left == NULL) {
return tree;
}
tree_minimum(tree->left);
}
/*求二叉搜索树最大结点*/
TreeNode_p *tree_maximum(TreeNode_p * tree) {
if (tree->right == NULL) {
return tree;
}
tree_maximum(tree->right);
}
后继查找
/*求二叉搜索树后继结点*/
TreeNode_p *tree_successor(TreeNode_p * tree) {
if (tree->right != NULL) {
return tree_minimum(tree->right); //右子树非空,则后继为右子树最小结点
}
TreeNode_p *y = tree->parent;
while(y != NULL && tree==y->right) {
tree = y;
y = tree->parent;
}
return y;
}
前驱节点
若一个节点有左子树,那么该节点的前驱节点是其左子树中val值最大的节点(也就是左子树中所谓的rightMostNode)
若一个节点没有左子树,那么判断该节点和其父节点的关系
2.1 若该节点是其父节点的右边孩子,那么该节点的前驱结点即为其父节点。
2.2 若该节点是其父节点的左边孩子,那么需要沿着其父亲节点一直向树的顶端寻找,直到找到一个节点P,P节点是其父节点Q的右边孩子,那么Q就是该节点的后继节点
/*求二叉搜索树后继结点*/
TreeNode_p *tree_presuccessor(TreeNode_p * tree) {
if (tree->left != NULL) {
return tree_maximum(tree->left); //右子树非空,则后继为右子树最小结点
}
TreeNode_p *y = tree->parent;
while (y != NULL && tree == y->left) {
tree = y;
y = tree->parent;
}
return y;
}
增加节点
void tree_insert(TreeNode_p * tree, TreeNode_p * node) {
TreeNode_p *y = NULL; //y标记node的父指针
TreeNode_p *x = tree; //x用于向下探测
while (x!=NULL)
{
y = x;
if (node->val < x->val) {
x = x->left;
}
else
{
x = x->right;
}
}
node->parent = y;
if (y == NULL) {
tree = node;
}
else if(node->val<y->val)
{
y->left = node;
}
else
{
y->right = node;
}
}
int main()
{
TreeNode_p *r1 = new TreeNode_p(15);
TreeNode_p *r2 = new TreeNode_p(6);
TreeNode_p *r3 = new TreeNode_p(18);
TreeNode_p *r4 = new TreeNode_p(3);
TreeNode_p *r5 = new TreeNode_p(7);
r1->left = r2;
r1->right = r3;
r2->parent = r1;
r2->left = r4;
r2->right = r5;
r3->parent = r1;
r4->parent = r2;
r5->parent = r2;
TreeNode_p *in = new TreeNode_p(4);
tree_insert(r1, in);
}
删除节点
必须分三种情况进行讨论。
//v子树替换u子树,tree是根节点
void transplant(TreeNode_p * tree, TreeNode_p * u, TreeNode_p *v)
{
if (u->parent == NULL) {
tree = v;
}
else if (u->parent->left ==u) //更新父节点的孩子
{
u->parent->left = v;
}
else
{
u->parent->right = v;
}
if (v != NULL) {
v->parent = u->parent;
}
}
/*二叉搜索树删除*/
void tree_delete(TreeNode_p * tree, TreeNode_p * node) {
if (node->left == NULL) //左子树空
{
transplant(tree, node, node->right);
}
else if(node->right==NULL) //右子树空
{
transplant(tree, node, node->left);
}
else
{
TreeNode_p *y = tree_minimum(node->right);;//寻找后继
if (y->parent != node)
{
transplant(tree, y, y->right);
y->right = node->right;
y->right->parent = y;
}
transplant(tree, node, y);//后继是待删除节点的子树,直接替换删除节点,并把后继左子树替换为删除节点左子树
y->left = node->left; //拼接左孩子
y->left->parent =y;
}
}
测试:
int main()
{
TreeNode_p *r1 = new TreeNode_p(15);
TreeNode_p *r2 = new TreeNode_p(6);
TreeNode_p *r3 = new TreeNode_p(18);
TreeNode_p *r4 = new TreeNode_p(3);
TreeNode_p *r5 = new TreeNode_p(7);
r1->left = r2;
r1->right = r3;
r2->parent = r1;
r2->left = r4;
r2->right = r5;
r3->parent = r1;
r4->parent = r2;
r5->parent = r2;
tree_delete(r1, r2);
}