Hibernate中悲观锁乐观锁的应用

悲观锁与乐观锁详解
本文深入探讨了数据库锁机制中的悲观锁与乐观锁的概念及其应用。悲观锁依赖于数据库的锁机制,确保数据的独占性,但可能导致性能开销。乐观锁则通过版本控制等手段减少锁的竞争,提高并发性能。

一个典型的倚赖数据库的悲观锁调用:

select * from account where name=”Erica” for update

这条sql 语句锁定了account 表中所有符合检索条(name=”Erica”)的记录。本次事务提交之前(事务提交时会释放事务过程中的锁),外界无法修改这些记录。

Hibernate的悲观锁,也是基于数据库的锁机制实现。

下面的代码实现了对查询记录的加锁:

String hqlStr ="from TUser as user where user.name='Erica'";

Query query = session.createQuery(hqlStr);

query.setLockMode("user",LockMode.UPGRADE); //加锁

List userList = query.list();//执行查询,获取数据

query.setLockMode对查询语句中,特定别名所对应的记录进行加锁(我们为TUser类指定了一个别名“user”),这里也就是对返回的所有user记录进行加锁。
观察运行期Hibernate生成的SQL语句:

select tuser0_.id as id, tuser0_.name as name, tuser0_.group_id as group_id, tuser0_.user_type as user_type, tuser0_.sex as sex from t_user tuser0_ where (tuser0_.name='Erica' ) for update

这里Hibernate通过使用数据库的for update子句实现了悲观锁机制。
Hibernate的加锁模式有:
Ø LockMode.NONE: 无锁机制。
Ø LockMode.WRITE:Hibernate在Insert和Update记录的时候会自动获取。
Ø LockMode.READ : Hibernate在读取记录的时候会自动获取。

以上这三种锁机制一般由Hibernate内部使用,如Hibernate为了保证Update过程中对象不会被外界修改,会在save方法实现中自动为目标对象加上WRITE锁。

Ø LockMode.UPGRADE:利用数据库的for update子句加锁。

Ø LockMode. UPGRADE_NOWAIT:Oracle的特定实现,利用Oracle的for update nowait子句实现加锁。

上面这两种锁机制是我们在应用层较为常用的,加锁一般通过以下方法实现:

Criteria.setLockMode

Query.setLockMode

Session.lock

注意,只有在查询开始之前(也就是Hiberate 生成SQL 之前)设定加锁,才会真正通过数据库的锁机制进行加锁处理,否则,数据已经通过不包含for update子句的Select SQL加载进来,所谓数据库加锁也就无从谈起。

乐观锁(Optimistic Locking)

相对悲观锁而言,乐观锁机制采取了更加宽松的加锁机制。悲观锁大多数情况下依靠数据库的锁机制实现,以保证操作最大程度的独占性。但随之而来的就是数据库性能的大量开销,特别是对长事务而言,这样的开销往往无法承受。

如一个金融系统,当某个操作员读取用户的数据,并在读出的用户数据的基础上进行修改时(如更改用户帐户余额),如果采用悲观锁机制,也就意味着整个操作过程中(从操作员读出数据、开始修改直至提交修改结果的全过程,甚至还包括操作员中途去煮咖啡的时间),数据库记录始终处于加锁状态,可以想见,如果面对几百上千个并发,这样的情况将导致怎样的后果。

乐观锁机制在一定程度上解决了这个问题。乐观锁,大多是基于数据版本(Version)记录机制实现。何谓数据版本?即为数据增加一个版本标识,在基于数据库表的版本解决方案中,一般是通过为数据库表增加一个“version”字段来实现。
读取出数据时,将此版本号一同读出,之后更新时,对此版本号加一。此时,将提交数据的版本数据与数据库表对应记录的当前版本信息进行比对,如果提交的数据版本号大于数据库表当前版本号,则予以更新,否则认为是过期数据。

对于上面修改用户帐户信息的例子而言,假设数据库中帐户信息表中有一个version字段,当前值为1;而当前帐户余额字段(balance)为$100。

1 操作员A 此时将其读出(version=1),并从其帐户余额中扣除50(100-$50)。

2 在操作员A操作的过程中,操作员B也读入此用户信息(version=1),并从其帐户余额中扣除20100-$20)。

3 操作员A完成了修改工作,将数据版本号加一(version=2),连同帐户扣除后余额(balance=$50),提交至数据库更新,此时由于提交数据版本大于数据库记录当前版本,数据被更新,数据库记录version更新为2。

4 操作员B完成了操作,也将版本号加一(version=2)试图向数据库提交数据(balance=$80),但此时比对数据库记录版本时发现,操作员B提交的数据版本号为2,数据库记录当前版本也为2,不满足“提交版本必须大于记录当前版本才能执行更新“的乐观锁策略,因此,操作员B 的提交被驳回。

这样,就避免了操作员B 用基于version=1 的旧数据修改的结果覆盖操作员A的操作结果的可能。

从上面的例子可以看出,乐观锁机制避免了长事务中的数据库加锁开销(操作员A和操作员B操作过程中,都没有对数据库数据加锁),大大提升了大并发量下的系统整体性能表现。需要注意的是,乐观锁机制往往基于系统中的数据存储逻辑,因此也具备一定的局限性,如在上例中,由于乐观锁机制是在我们的系统中实现,来自外部系统的用户余额更新操作不受我们系统的控制,因此可能会造成脏数据被更新到数据库中。在系统设计阶段,我们应该充分考虑到这些情况出现的可能性,并进行相应调整(如将乐观锁策略在数据库存储过程中实现,对外只开放基于此存储过程的数据更新途径,而不是将数据库表直接对外公开)。

Hibernate 在其数据访问引擎中内置了乐观锁实现。如果不用考虑外部系统对数据库的更新操作,利用Hibernate提供的透明化乐观锁实现,将大大提升我们的生产力。Hibernate中可以通过class描述符的optimistic-lock属性结合version描述符指定。现在,我们为之前示例中的TUser加上乐观锁机制。

1. 首先为TUser的class描述符添加optimistic-lock属性:

<hibernate-mapping>
<class name="org.hibernate.sample.TUser" table="t_user" dynamic-update="true" ynamic-insert="true" optimistic-lock="version">
……
</class>
</hibernate-mapping>

optimistic-lock属性有如下可选取值:
Ø version 通过版本机制实现乐观锁
Ø dirty 通过检查发生变动过的属性实现乐观锁
Ø all 通过检查所有属性实现乐观锁
其中通过version实现的乐观锁机制是Hibernate官方推荐的乐观锁实现,同时也 是Hibernate中,目前唯一在数据对象脱离Session发生修改的情况下依然有效的锁机 制。因此,一般情况下,我们都选择version方式作为Hibernate乐观锁实现机制。

2. 添加一个Version属性描述符

<hibernate-mapping>

<class name="org.hibernate.sample.TUser" table="t_user" dynamic-update="true" dynamic-insert="true" optimistic-lock="version">

<id name="id" column="id" type="java.lang.Integer">
<generator class="native"></generator>
</id>

<version column="version" name="version" type="java.lang.Integer"/>
……
</class>
</hibernate-mapping>

注意version 节点必须出现在ID 节点之后。

这里我们声明了一个version属性,用于存放用户的版本信息,保存在TUser表的version字段中。此时如果我们尝试编写一段代码,更新TUser表中记录数据,如:

Criteria criteria = session.createCriteria(TUser.class);

criteria.add(Expression.eq("name","Erica"));

List userList = criteria.list();

TUser user =(TUser)userList.get(0);

Transaction tx = session.beginTransaction();

user.setUserType(1); //更新UserType字段

tx.commit();

每次对TUser进行更新的时候,我们可以发现,数据库中的version都在递增。

而如果我们尝试在tx.commit 之前,启动另外一个Session,对名为Erica 的用

户进行操作,以模拟并发更新时的情形:

Session session= getSession();

Criteria criteria = session.createCriteria(TUser.class);

criteria.add(Expression.eq("name","Erica"));

Session session2 = getSession();

Criteria criteria2 = session2.createCriteria(TUser.class);

criteria2.add(Expression.eq("name","Erica"));

List userList = criteria.list();

List userList2 = criteria2.list();TUser user =(TUser)userList.get(0);

TUser user2 =(TUser)userList2.get(0);

Transaction tx = session.beginTransaction();

Transaction tx2 = session2.beginTransaction();

user2.setUserType(99);

tx2.commit();

user.setUserType(1);

tx.commit();

执行以上代码,代码将在tx.commit()处抛出StaleObjectStateException异常,并指出版本检查失败,当前事务正在试图提交一个过期数据。通过捕捉这个异常,我们就可以在乐观锁校验失败时进行相应处理。

标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计与管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计与实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提取、模型构建、验证与优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约与非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理与转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建与验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率与特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差与方差,增强整体预测的稳定性与准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理与模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值