本题要求编写程序,计算2个有理数的和、差、积、商。
输入格式:
输入在一行中按照“a1/b1 a2/b2”的格式给出两个分数形式的有理数,其中分子和分母全是整型范围内的整数,负号只可能出现在分子前,分母不为0。
输出格式:
分别在4行中按照“有理数1 运算符 有理数2 = 结果”的格式顺序输出2个有理数的和、差、积、商。注意输出的每个有理数必须是该有理数的最简形式“k a/b”,其中k是整数部分,a/b是最简分数部分;若为负数,则须加括号;若除法分母为0,则输出“Inf”。题目保证正确的输出中没有超过整型范围的整数。
输入样例1:2/3 -4/2输出样例1:
2/3 + (-2) = (-1 1/3) 2/3 - (-2) = 2 2/3 2/3 * (-2) = (-1 1/3) 2/3 / (-2) = (-1/3)输入样例2:
5/3 0/6输出样例2:
1 2/3 + 0 = 1 2/3 1 2/3 - 0 = 1 2/3 1 2/3 * 0 = 0 1 2/3 / 0 = Inf
思路:比较繁琐的题目
#include<stdio.h>
#include<math.h>
int gcd(long long a, long long b){
return b == 0 ? a : gcd(b, a % b);
}
void print(long long a, long long b){
long long c;
if(a > 0){
if(b == 1){
printf("%lld", a);
}
else if(a > b){
c = a / b;
a -= b * c;
printf("%lld %lld/%lld", c, a, b);
}
else{
printf("%lld/%lld", a, b);
}
}
else if(a == 0){
printf("%c", '0');
}
else{
if(b == 1){
printf("(%lld)", a);
}
else if(-1 * a > b){
c = a / b;
a = (-1 * a) % b;
printf("(%lld %lld/%lld)", c, a, b);
}
else{
printf("(%lld/%lld)", a, b);
}
}
}
void add(long long a, long long b, long long c, long long d){
print(a, b);
printf(" + ");
print(c, d);
printf(" = ");
long long m = a * d + c * b;
long long n = b * d;
long long gcd3 = abs(gcd(m, n));
m /= gcd3;
n /= gcd3;
print(m, n);
printf("\n");
}
void sub(long long a, long long b, long long c, long long d){
print(a, b);
printf(" - ");
print(c, d);
printf(" = ");
long long m = a * d - c * b;
long long n = b * d;
long long gcd3 = abs(gcd(m, n));
m /= gcd3;
n /= gcd3;
print(m, n);
printf("\n");
}
void mul(long long a, long long b, long long c, long long d){
print(a, b);
printf(" * ");
print(c, d);
printf(" = ");
long long m = a * c;
long long n = b * d;
long long gcd3 = abs(gcd(m, n));
m /= gcd3;
n /= gcd3;
print(m, n);
printf("\n");
}
void div(long long a, long long b, long long c, long long d){
print(a, b);
printf(" / ");
print(c, d);
printf(" = ");
if(c == 0){
printf("Inf");
}
else if(c < 0){
long long m = -1 * a * d;
long long n = -1 * b * c;
long long gcd3 = abs(gcd(m, n));
m /= gcd3;
n /= gcd3;
print(m, n);
}
else{
long long m = a * d;
long long n = b * c;
long long gcd3 = abs(gcd(m, n));
m /= gcd3;
n /= gcd3;
print(m, n);
}
printf("\n");
}
int main(){
long long a, b, c, d;
long long c1 = 0, c2 = 0;
scanf("%lld/%lld %lld/%lld", &a, &b, &c, &d);
long long gcd1 = abs(gcd(a, b));
a /= gcd1;
b /= gcd1;
long long gcd2 = abs(gcd(c, d));
c /= gcd2;
d /= gcd2;
add(a, b, c, d);
sub(a, b, c, d);
mul(a, b, c, d);
div(a, b, c, d);
return 0;
}