Link:click here
The question:求A的B次方的所有因子的和模9901的值
Solution:求出A的素因子x和个数y,每个素因子有
y+1
种取法,所有因子的总个数为
(1+y[1])×(1+y[2])×⋅⋅⋅×(1+y[n])
所以,所有因子的和为:
(1+x[1]+x[1]2+⋅⋅⋅x[1]y[1])×(1+x[2]+x[2]2+⋅⋅⋅x[2]y[2])×(1+x[3]+x[3]2+⋅⋅⋅x[3]y[3])×⋅⋅⋅×(1+x[n]+x[n]2+⋅⋅⋅+x[n]y[n])
Conclusion:求等比数列和的时候,并不能用公式求,需要二分来求。因为快速幂取模后, 1−qn 会出现误差,不等于正确的结果,如果不去模又会溢出。
Code:
#include <bits/stdc++.h>
using namespace std;
const long long mod = 9901;
long long quick(long long x, long long y)
{
long long s = 1;
for (; y; y >>= 1, x = x * x % mod)
if (y & 1)
s = s * x % mod;
return s;
}
long long sum(long long q, long long n)
{
if (!n)
{
return 1;
}
if (n & 1)//odd
{
return ((1 + quick(q, n / 2 + 1)) * sum(q, n / 2)) % mod;
}
else//even
{
return ((1 + quick(q, n / 2 + 1)) * sum(q, n / 2 - 1) + quick(q, n / 2)) % mod;
}
}
long long Sum(long long q, long long n)
{
return (1 - quick(q, n + 1))/ (1 - q);
}
int main()
{
long long A, B;
while(~scanf("%lld%lld", &A, &B))
{
int c = 0;
long long ans = 1;
for (int i = 2; i * i <= A; i++)
{
int num = 0;
if (A % i == 0)
{
while (A % i == 0)
{
A /= i;
num++;
}
}
if (num)
ans = ans * Sum(i, B * num) % mod;
}
if (A != 1)
{
ans = ans * Sum(A, B) % mod;
}
printf("%lld\n", ans % mod);
}
return 0;
}