fibonacci数列(二)
- 描述
In the Fibonacci integer sequence, F0 = 0, F1 = 1, andFn =Fn − 1 +Fn − 2 forn ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
- 输入
- The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1. 输出
- For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000). 样例输入
-
0 9 1000000000 -1
样例输出 -
0 34 6875
矩阵快速幂...好高级
如:求A^156,而156(10)=10011100(2)也就有A^156=>(A^4)*(A^8)*(A^16)*(A^128) 考虑到因子间的联系,我们从二进制10011100中的最右端开始计算到最左端。细节就说到这,下面给核心代码:
while(N)
{
if(N&1)
res=res*A;
N>>=1;
A=A*A;
}
贴个本题的最优:
#include <stdio.h> int f(int x,int y,int a,int b) { return a*x+b*y; } int main() { int n,i,j,k; while(scanf("%d",&n)&&~n) { int t[2][2]; int a[2][2]= { 1,0, 1,0 }; int b[2][2]= { 1,1, 1,0 }; while(n) { if(n&1) { t[0][0]=f(a[0][0],a[0][1],b[0][0],b[1][0])%10000; t[0][1]=f(a[0][0],a[0][1],b[0][1],b[1][1])%10000; t[1][0]=f(a[1][0],a[1][1],b[0][0],b[1][0])%10000; t[1][1]=(a[1][0],a[1][1],b[0][1],b[1][1])%10000; a[0][0]=t[0][0]; a[0][1]=t[0][1]; a[1][0]=t[1][0]; a[1][1]=t[1][1]; } t[0][0]=f(b[0][0],b[0][1],b[0][0],b[1][0])%10000; t[0][1]=f(b[0][0],b[0][1],b[0][1],b[1][1])%10000; t[1][0]=f(b[1][0],b[1][1],b[0][0],b[1][0])%10000; t[1][1]=f(b[1][0],b[1][1],b[0][1],b[1][1])%10000; b[0][0]=t[0][0]; b[0][1]=t[0][1]; b[1][0]=t[1][0]; b[1][1]=t[1][1]; n=n>>1; } printf("%d\n",a[0][1]); } return 0; }