Tree and Permutation
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 69 Accepted Submission(s): 26
Problem Description
There are N vertices connected by N−1 edges, each edge has its own length.
The set { 1,2,3,…,N } contains a total of N! unique permutations, let’s say the i-th permutation is Pi and Pi,j is its j-th number.
For the i-th permutation, it can be a traverse sequence of the tree with N vertices, which means we can go from the Pi,1-th vertex to the Pi,2-th vertex by the shortest path, then go to the Pi,3-th vertex ( also by the shortest path ) , and so on. Finally we’ll reach the Pi,N-th vertex, let’s define the total distance of this route as D(Pi) , so please calculate the sum of D(Pi) for all N! permutations.
Input
There are 10 test cases at most.
The first line of each test case contains one integer N ( 1≤N≤105 ) .
For the next N−1 lines, each line contains three integer X, Y and L, which means there is an edge between X-th vertex and Y-th of length L ( 1≤X,Y≤N,1≤L≤109 ) .
Output
For each test case, print the answer module 109+7 in one line.
Sample Input
3 1 2 1 2 3 1 3 1 2 1 1 3 2
Sample Output
16 24
Source
思路:
写出全排列,我们很容易发现每条无向边都会出现(n-1)!次,那么问题就变成了求每个点到其他各个点的距离的和。我们可以算出每条边出现的次数。先随意建一棵树,一条边出现的次数=两边顶点数的乘积*2。可以用dfs预处理出树上每个点的子树的节点数。
公式:
(s=min(dp[e[i].u],dp[e[i].v]))
代码:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define MAXN 100005
#define inf 0x3f3f3f3f3f3f3f3f
#define mod 1000000007
int n;
ll fac[MAXN];
struct node
{
int u,v;
ll w;
}e[MAXN];
vector<int> vec[MAXN];
int dp[MAXN];
bool vis[MAXN];
int dfs(int u)
{
int s=1;
for(int i=0;i<vec[u].size();i++)
{
int v=vec[u][i];
if(vis[v]) continue;
vis[v]=1;
s+=dfs(v);
}
return dp[u]=s;
}
int main()
{
fac[1]=1;
for(int i=2;i<MAXN;i++)
fac[i]=(fac[i-1]*i)%mod;
while(~scanf("%d",&n))
{
for(int i=1;i<=n;i++)
vec[i].clear();
for(int i=1;i<n;i++)
{
int u,v;
ll w;
scanf("%d%d%lld",&u,&v,&w);
e[i].u=u;
e[i].v=v;
e[i].w=w;
vec[u].push_back(v);
vec[v].push_back(u);
}
memset(dp,0,sizeof dp);
memset(vis,0,sizeof vis);
vis[1]=1;
dfs(1);
ll ans=0;
for(int i=1;i<n;i++)
{
int u=e[i].u;
int v=e[i].v;
int s=min(dp[u],dp[v]);
ans=(ans+2LL*s*(n-s)*e[i].w)%mod;
}
printf("%lld\n",(ans*fac[n-1])%mod);
}
return 0;
}