Educational Codeforces Round 49 (Rated for Div. 2) C. Minimum Value Rectangle

解决一个算法问题,从给定长度的棍子中选择四根组成面积与周长比最小的矩形。通过优化数据结构减少时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

C. Minimum Value Rectangle

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You have nn sticks of the given lengths.

Your task is to choose exactly four of them in such a way that they can form a rectangle. No sticks can be cut to pieces, each side of the rectangle must be formed by a single stick. No stick can be chosen multiple times. It is guaranteed that it is always possible to choose such sticks.

Let SS be the area of the rectangle and PP be the perimeter of the rectangle.

The chosen rectangle should have the value P2SP2S minimal possible. The value is taken without any rounding.

If there are multiple answers, print any of them.

Each testcase contains several lists of sticks, for each of them you are required to solve the problem separately.

Input

The first line contains a single integer TT (T≥1T≥1) — the number of lists of sticks in the testcase.

Then 2T2T lines follow — lines (2i−1)(2i−1) and 2i2i of them describe the ii-th list. The first line of the pair contains a single integer nn (4≤n≤1064≤n≤106) — the number of sticks in the ii-th list. The second line of the pair contains nn integers a1,a2,…,ana1,a2,…,an (1≤aj≤1041≤aj≤104) — lengths of the sticks in the ii-th list.

It is guaranteed that for each list there exists a way to choose four sticks so that they form a rectangle.

The total number of sticks in all TT lists doesn't exceed 106106 in each testcase.

Output

Print TT lines. The ii-th line should contain the answer to the ii-th list of the input. That is the lengths of the four sticks you choose from the ii-th list, so that they form a rectangle and the value P2SP2S of this rectangle is minimal possible. You can print these four lengths in arbitrary order.

If there are multiple answers, print any of them.

Example

input

Copy

3
4
7 2 2 7
8
2 8 1 4 8 2 1 5
5
5 5 5 5 5

output

Copy

2 7 7 2
2 2 1 1
5 5 5 5

Note

There is only one way to choose four sticks in the first list, they form a rectangle with sides 22 and 77, its area is 2⋅7=142⋅7=14, perimeter is 2(2+7)=182(2+7)=18. 18214≈23.14318214≈23.143.

The second list contains subsets of four sticks that can form rectangles with sides (1,2)(1,2), (2,8)(2,8) and (1,8)(1,8). Their values are 622=18622=18, 20216=2520216=25 and 1828=40.51828=40.5, respectively. The minimal one of them is the rectangle (1,2)(1,2).

You can choose any four of the 55 given sticks from the third list, they will form a square with side 55, which is still a rectangle with sides (5,5)(5,5).

思路:

对式子进行变形可得出结论:使a/b+b/a尽量小。

然后枚举寻找最优解就行了。用sort会超时,可以用各种数据结构优化一下。(cf卡时限果然不是什么好主意。

代码:

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define MAXN 105
#define inf 0x3f3f3f3f
int n;
int dis[10005],a[10005];
set<int> se;
set<int>::iterator it;
bool cmp(int a,int b)
{
    return a>b;
}
int main()
{
    int t,u;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        memset(dis,0,sizeof dis);
        int maxx=0;
        se.clear();
        for(int i=0;i<n;i++)
        {
            scanf("%d",&u);
            maxx=max(maxx,u);
            se.insert(u);
            dis[u]++;
        }
        int flag=0,tot=0,minlen=inf,pre=-1,u,v;
        double minn=inf;
        for(it=se.begin();it!=se.end();it++)
        {
            int i=*it;
            if(dis[i]>=4)
            {
                flag=i;
                break;
            }
            if(dis[i]>=2)
            {
                if(pre!=-1)
                {
                    double s=pre*1.0/i+i*1.0/pre;
                    if(s<minn)
                    {
                        minn=s;
                        u=pre;
                        v=i;
                    }
                }
                a[tot++]=i;
                pre=i;
            }
        }
        if(flag)
        {
            printf("%d %d %d %d\n",flag,flag,flag,flag);
            continue;
        }
        printf("%d %d %d %d\n",u,u,v,v);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值