题目:
CRB and Tree
Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 1247 Accepted Submission(s): 406
Problem Description
CRB has a tree, whose vertices are labeled by 1, 2, …,
N
. They are connected by
N
– 1 edges. Each edge has a weight.
For any two vertices u and v (possibly equal), f(u,v) is xor(exclusive-or) sum of weights of all edges on the path from u to v .
CRB’s task is for given s , to calculate the number of unordered pairs (u,v) such that f(u,v) = s . Can you help him?
For any two vertices u and v (possibly equal), f(u,v) is xor(exclusive-or) sum of weights of all edges on the path from u to v .
CRB’s task is for given s , to calculate the number of unordered pairs (u,v) such that f(u,v) = s . Can you help him?
Input
There are multiple test cases. The first line of input contains an integer
T
, indicating the number of test cases. For each test case:
The first line contains an integer N denoting the number of vertices.
Each of the next N - 1 lines contains three space separated integers a , b and c denoting an edge between a and b , whose weight is c .
The next line contains an integer Q denoting the number of queries.
Each of the next Q lines contains a single integer s .
1 ≤ T ≤ 25
1 ≤ N ≤ 105
1 ≤ Q ≤ 10
1 ≤ a , b ≤ N
0 ≤ c , s ≤ 105
It is guaranteed that given edges form a tree.
The first line contains an integer N denoting the number of vertices.
Each of the next N - 1 lines contains three space separated integers a , b and c denoting an edge between a and b , whose weight is c .
The next line contains an integer Q denoting the number of queries.
Each of the next Q lines contains a single integer s .
1 ≤ T ≤ 25
1 ≤ N ≤ 105
1 ≤ Q ≤ 10
1 ≤ a , b ≤ N
0 ≤ c , s ≤ 105
It is guaranteed that given edges form a tree.
Output
For each query, output one line containing the answer.
Sample Input
1 3 1 2 1 2 3 2 3 2 3 4
Sample Output
1 1 0HintFor the first query, (2, 3) is the only pair that f(u, v) = 2. For the second query, (1, 3) is the only one. For the third query, there are no pair (u, v) such that f(u, v) = 4.
Author
KUT(DPRK)
Source
Recommend
wange2014
题意:给一棵树,树的形态和每条边的权值告诉你,有Q个询问,每个询问有一个整数s,问你这棵树中有多少对节点,使得这两个节点间路径的异或和等于s。
思路:由于异或的结合律和交换律,u和v路径的异或和f(u,v)=f(root,u)^f(root,v),所以我们只需用树形DP求出根节点与每个节点的异或和,然后将这些值都存起来,对于每个询问,我们只需遍历所有节点,假设第i个节点与根节点的异或和为dp[i],如果dp[i]^dp[j]=s,那么dp[j]=dp[i]^s,所以只需看一下有多少个节点的值为dp[i]^s,每次查询复杂度为O(n),
需要注意当dp[i]^s=dp[i]的时候要特判一下。
代码:
#include <cstdlib>
#include <cctype>
#include <cstring>
#include <cstdio>
#include <cmath>
#include<climits>
#include <algorithm>
#include <vector>
#include <string>
#include <iostream>
#include <sstream>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <fstream>
#include <numeric>
#include <iomanip>
#include <bitset>
#include <list>
#include <stdexcept>
#include <functional>
#include <utility>
#include <ctime>
using namespace std;
#define PB push_back
#define MP make_pair
#define REP(i,x,n) for(int i=x;i<(n);++i)
#define FOR(i,l,h) for(int i=(l);i<=(h);++i)
#define FORD(i,h,l) for(int i=(h);i>=(l);--i)
#define SZ(X) ((int)(X).size())
#define ALL(X) (X).begin(), (X).end()
#define RI(X) scanf("%d", &(X))
#define RII(X, Y) scanf("%d%d", &(X), &(Y))
#define RIII(X, Y, Z) scanf("%d%d%d", &(X), &(Y), &(Z))
#define DRI(X) int (X); scanf("%d", &X)
#define DRII(X, Y) int X, Y; scanf("%d%d", &X, &Y)
#define DRIII(X, Y, Z) int X, Y, Z; scanf("%d%d%d", &X, &Y, &Z)
#define OI(X) printf("%d",X);
#define RS(X) scanf("%s", (X))
#define MS0(X) memset((X), 0, sizeof((X)))
#define MS1(X) memset((X), -1, sizeof((X)))
#define LEN(X) strlen(X)
#define F first
#define S second
#define Swap(a, b) (a ^= b, b ^= a, a ^= b)
#define Dpoint strcut node{int x,y}
#define cmpd int cmp(const int &a,const int &b){return a>b;}
/*#ifdef HOME
freopen("in.txt","r",stdin);
#endif*/
const int MOD = 1e9+7;
typedef vector<int> VI;
typedef vector<string> VS;
typedef vector<double> VD;
typedef long long LL;
typedef pair<int,int> PII;
//#define HOME
int Scan()
{
int res = 0, ch, flag = 0;
if((ch = getchar()) == '-') //判断正负
flag = 1;
else if(ch >= '0' && ch <= '9') //得到完整的数
res = ch - '0';
while((ch = getchar()) >= '0' && ch <= '9' )
res = res * 10 + ch - '0';
return flag ? -res : res;
}
/*----------------PLEASE-----DO-----NOT-----HACK-----ME--------------------*/
struct node
{
int id;
int w;
node(int _id,int _w):id(_id),w(_w){}
};
vector<node>g[100000+5];
int head[100000+5];
struct Edge
{
int u;
int next;
int w;
}edge[100000+5];
int elen;
long long int dp[100000+5];
void dfs(int cur,int f)
{
for(int i=0;i<g[cur].size();i++)
if(g[cur][i].id!=f)
{
dp[g[cur][i].id]=dp[cur]^g[cur][i].w;
dfs(g[cur][i].id,cur);
}
}
map<long long int ,int >mm;
int sum[1000000];
int main()
{int T;
RI(T);
while(T--)
{
int n;
RI(n);
for(int i=1;i<=n;i++)
g[i].clear();
MS0(sum);
int a,b,c;
//mm.clear();
for(int i=0;i<n-1;i++)
{
RIII(a,b,c);
g[a].push_back(node(b,c));
g[b].push_back(node(a,c));
}
dp[1]=0;
dfs(1,1);
for(int i=1;i<=n;i++)
sum[dp[i]]++;
int q;
RI(q);
while(q--)
{
int s;
RI(s);
long long int ans=0;
for(int i=1;i<=n;i++)
{
if(dp[i]==(dp[i]^s))
ans++;
ans+=sum[dp[i]^s];
}
printf("%I64d\n",ans/2);
}
}
return 0;
}