Retrospective research has only focused on using rectangular bounding box or horizontal sliding window to localize text, which may result in redundant background noise, unnecessary overlap or even information loss. To address these issues, we propose a new Convolutional Neural Networks (CNNs) based method, named Deep Matching Prior Network (DMPNet), to detect text with tighter quadrangle.
quadrangle 四边形
- firstly, roughly recalling text with quadrilateral sliding window
- then, using a shared Monte-Carlo method for fast and accurate computing of polygonal areas;
- finely localizing text with quadrangle and design a Smooth Ln loss for
moderately adjusting the predicted bounding box.
设计多几个sliding window
改进计算overlap的方式
回归十个参数
In future, we will explore using shape-adaptive sliding windows toward tighter scene text detection.
针对传统矩形框文本检测存在的背景噪声、重叠及信息丢失等问题,本文提出一种新的卷积神经网络方法——深度匹配先验网络(DMPNet),通过四边形滑动窗口粗定位文本区域,结合蒙特卡洛方法快速准确地计算多边形面积,并设计SmoothLn损失函数适度调整预测边界框,最终实现更精确的文本定位。
3441

被折叠的 条评论
为什么被折叠?



