一、GBDT分类
(1)模型参数初始化:
from sklearn.ensemble import GradientBoostingClassifier
gbdt = GradientBoostingClassifier(
init=None,
learning_rate=0.1,
loss='deviance',
max_depth=3,
max_features=None,
max_leaf_nodes=None,
min_samples_leaf=1,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
n_estimators=100,
random_state=None,
subsample=1.0,
verbose=0,
warm_start=False)
(2)训练:X,y为训练集
二、GBDT回归gbdt.fit(X, y)(3)据此选重要特征,注:GBDT可以用来进行特征选择score = gbdt.feature_importances_ for s in score: print s(4)预测,看GBDT的分类效果result = gbdt.predict(new_test_frature)overall_accuracy = metrics.accuracy_score(result, y_test) print overall_accuracy
(1)模型参数初始化:
from sklearn.ensemble import GradientBoostingRegressor
gbdt = GradientBoostingRegressor( loss='ls', learning_rate=0.1, n_estimators=100, subsample=1, min_samples_split=2, min_samples_leaf=1, max_depth=3, init=None, random_state=None, max_features=None, alpha=0.9, verbose=0, max_leaf_nodes=None, warm_start=False )(2)训练:X,y为训练集gbdt.fit(X, y)(3)据此选重要特征score = gbdt.feature_importances_ for s in score: print s(4)预测,看GBDT的分类效果result = gbdt.predict(new_test_frature)
本文介绍了如何在Python中利用sklearn库实现GBDT分类,详细讲解了模型参数的初始化步骤。
930

被折叠的 条评论
为什么被折叠?



