LP距离与余弦距离物理意义

本文对比了L2距离(欧氏距离)与余弦距离的区别,前者侧重于绝对位置差异,后者关注向量方向差异。介绍了这两种度量方式在用户行为分析及评分系统中的应用,并提出调整余弦相似度算法解决评分标准不一致的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

截取自:http://www.cnblogs.com/chaosimple/archive/2013/06/28/3160839.html

区别如图所示:

L2距离(欧氏距离)

衡量的是绝对距离,跟各个点所在的位置坐标直接相关;而余弦距离衡量的是空间向量的夹角,更加体现在方向上的差异,而不是位置。

欧氏距离能够体现个体数值特征的绝对差异,所以更多的用于需要从维度的数值大小中体现差异的分析,如使用用户行为指标分析用户价值的相似度或差异。

LP距离

二维空间中与原点lp距离为1的点的图形

余弦距离

更多的是从方向上区分差异,而对绝对的数值不敏感,更多的用于使用用户对内容评分来区分兴趣的相似度和差异,同时修正了用户间可能存在的度量标准不统一的问题(因为余弦距离对绝对数值不敏感)。

调整余弦相似度算法(Adjusted Cosine Similarity)

余弦相似度更多的是从方向上区分差异,而对绝对的数值不敏感,因此没法衡量每个维度上数值的差异,会导致这样一种情况:

用户对内容评分,按5分制,X和Y两个用户对两个内容的评分分别为(1,2)和(4,5),使用余弦相似度得到的结果是0.98,两者极为相似。但从评分上看X似乎不喜欢2这个 内容,而Y则比较喜欢,余弦相似度对数值的不敏感导致了结果的误差,需要修正这种不合理性就出现了调整余弦相似度,即所有维度上的数值都减去一个均值,比如X和Y的评分均值都是3,那么调整后为(-2,-1)和(1,2),再用余弦相似度计算,得到-0.8,相似度为负值并且差异不小,但显然更加符合现实。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值