Codeforces 193D Two Segments (线段树)

本文介绍了一种使用线段树进行区间更新与查询的优化方法,通过递归地将操作应用于子节点并维护懒惰标记来避免重复计算。该方法特别适用于解决需要频繁更新区间内元素并查询区间最大最小值的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <algorithm>
#include <ctime>
#include <cstdlib>
#include <functional>
#pragma comment(linker,"/STACK:102400000,102400000")
using namespace std;


#define eps 1e-10
#define N 300030
#define B 20
#define M 3000020
#define inf 0x3f3f3f3f
#define LL long long
#define pii pair<int, int>
#define MP make_pair
#define fi first
#define se second
#define mod 1000000007
#define ls (i << 1)
#define rs (ls | 1)
#define md (ll + rr >> 1)
#define lson ll, md, ls
#define rson md + 1, rr, rs


int mi1[N << 2], mi2[N << 2], s1[N << 2], s2[N << 2], lazy[N << 2];


int n, a[N], f[N];

void build(int ll, int rr, int i) {
	mi1[i] = 0, s1[i] = rr - ll + 1;
	mi2[i] = inf, s2[i] = 0;
	if(ll == rr) return;
	build(lson);
	build(rson);
}
LL ans;
int t;

void upd(int v, int i) {
	mi1[i] += v;
	mi2[i] += v;
	lazy[i] += v;
}

void push_down(int i) {
	if(lazy[i]) {
		upd(lazy[i], ls);
		upd(lazy[i], rs);
		lazy[i] = 0;
	}
}
void calc(int i, int x, int v) {
	if(v == 0) return;
	if(x < mi1[i]) {
		mi2[i] = mi1[i], s2[i] = s1[i];
		mi1[i] = x, s1[i] = v;
	}
	else if(x == mi1[i]) {
		s1[i] += v;
	}
	else if(x < mi2[i]) {
		mi2[i] = x, s2[i] = v;
	}
	else if(x == mi2[i]) {
		s2[i] += v;
	}
}
void push_up(int i) {
	mi1[i] = mi1[ls], s1[i] = s1[ls];
	mi2[i] = mi2[ls], s2[i] = s2[ls];
	calc(i, mi1[rs], s1[rs]);
	calc(i, mi2[rs], s2[rs]);
}
void update(int l, int r, int v, int ll, int rr, int i) {
	if(ll == l && rr == r) {
		upd(v, i);
		return;
	}
	push_down(i);
	if(r <= md) update(l, r, v, lson);
	else if(l > md) update(l, r, v, rson);
	else {
		update(l, md, v, lson);
		update(md + 1, r, v, rson);
	}
	push_up(i);
}

void query(int l, int r, int ll, int rr, int i) {
	if(ll == l && rr == r) {
		calc(t, mi1[i], s1[i]);
		calc(t, mi2[i], s2[i]);
		return;
	}
	push_down(i);
	if(r <= md) query(l, r, lson);
	else if(l > md) query(l, r, rson);
	else {
		query(l, md, lson);
		query(md + 1, r, rson);
	}
}
int main() {
	scanf("%d", &n);
	for(int i = 1; i <= n; ++i) {
		scanf("%d", &a[i]);
		f[a[i]] = i;
	}
	build(1, n, 1);
	ans = 0;
	t = (N << 2) - 1;
	for(int i = 1; i <= n; ++i) {
		int l = -1, r = -1;
		if(f[i] > 1 && a[f[i] - 1] <= i) l = a[f[i] - 1];
		if(f[i] < n && a[f[i] + 1] <= i) r = a[f[i] + 1];
		if(l > r) swap(l, r);
		if(r == -1) update(1, i, 1, 1, n, 1);
		else if(l == -1) {
			update(r + 1, i, 1, 1, n, 1);
		}
		else {
			update(r + 1, i, 1, 1, n, 1);
			update(1, l, -1, 1, n, 1);
		}
		
		mi1[t] = inf, mi2[t] = inf;
		query(1, i, 1, n, 1);
		if(mi1[t] == 1) ans += s1[t];
		if(mi2[t] == 2) ans += s2[t];

	}
	printf("%lld\n", ans - n);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值