http://acm.timus.ru/problem.aspx?space=1&num=1057
1057. Amount of Degrees
Time limit: 1.0 second
Memory limit: 64 MB
Memory limit: 64 MB
Create a code to determine the amount of integers, lying in the set [
X;
Y] and being a sum of exactly
K different integer degrees of
B.
Example. Let
X=15,
Y=20,
K=2,
B=2. By this example 3 numbers are the sum of exactly two integer degrees of number 2:
17 = 2
4+2
0,
18 = 2 4+2 1,
20 = 2 4+2 2.
18 = 2 4+2 1,
20 = 2 4+2 2.
Input
The first line of input contains integers
X and
Y, separated with a space (1 ≤
X ≤
Y ≤ 2
31−1). The next two lines contain integers
K and
B (1 ≤
K ≤ 20; 2 ≤
B ≤ 10).
Output
Output should contain a single integer — the amount of integers, lying between
X and
Y, being a sum of exactly
K different integer degrees of
B.
Sample
input | output |
---|---|
15 20 2 2 | 3 |
/**
Timus OJ 1057 数位dp
题目大意:求出在给定区间内由多少个数可以表示为k个不同的b的幂之和
解题思路:对于一个数n,可以求比它小的数的个数有多少个满足条件,首先将n转化为b进制,然后用二进制表示状态,如果b进制下第i位上的数为1,那么对应二进制数为1,
如果为0对应二进制位为0,如果b进制下第i位上的数大于1,那么从第i为往后的二进制位全部置1,得到一个二进制数ans那么该问题就转化为求所有小于等于ans
的二进制数中含有m个1的数有多少个?dp[i][j]表示i二进制位数含j个1的数有多少个,采用记忆化搜索写挺方便
*/
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <iostream>
using namespace std;
int x,y,k,b;
int bit[35],dp[35][65];
int dfs(int len,int num,int flag,int first)
{
if(len<0)return num==k;
if(flag==0&&dp[len][num]!=-1)
return dp[len][num];
int ans=0;
int end=flag?bit[len]:1;
for(int i=0;i<=end;i++)
{
int t=first&&(i==0);
ans+=dfs(len-1,t?0:num+(i==1),flag&&i==end,t);
}
if(flag==0)
dp[len][num]=ans;
return ans;
}
int solve(int n)
{
int len=0;
while(n)
{
bit[len++]=n%b;
n/=b;
}
int ans=0;
for(int i=len-1;i>=0;i--)
{
if(bit[i]>1)
{
for(int j=i;j>=0;j--)
ans|=(1<<j);
}
else
{
ans|=(bit[i]<<i);
}
}
len=0;
while(ans)
{
bit[len++]=ans&1;
ans>>=1;
}
return dfs(len-1,0,1,1);
}
int main()
{
while(~scanf("%d%d%d%d",&x,&y,&k,&b))
{
memset(dp,-1,sizeof(dp));
printf("%d\n",solve(y)-solve(x-1));
}
return 0;
}