Uva 315 求无向图的割点的个数

本文探讨了如何使用图论中的Tarjan算法解决UVA在线判题系统中的关键节点识别问题。详细介绍了算法实现过程,包括添加边、拓扑排序、桥与关键点的判断,以及在不同网络配置下的应用示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=251

A Telephone Line Company (TLC) is establishing a new telephone cable network. They are connecting several places numbered by integers from 1 to N. No two places have the same number. The lines are bidirectional and always connect together two places and in each place the lines end in a telephone exchange. There is one telephone exchange in each place. From each place it is possible to reach through lines every other place, however it need not be a direct connection, it can go through several exchanges. From time to time the power supply fails at a place and then the exchange does not operate. The officials from TLC realized that in such a case it can happen that besides the fact that the place with the failure is unreachable, this can also cause that some other places cannot connect to each other. In such a case we will say the place (where the failure occured) is critical. Now the officials are trying to write a program for finding the number of all such critical places. Help them.

Input

The input file consists of several blocks of lines. Each block describes one network. In the first line of each block there is the number of places N < 100. Each of the next at most N lines contains the number of a place followed by the numbers of some places to which there is a direct line from this place. These at mostN lines completely describe the network, i.e., each direct connection of two places in the network is contained at least in one row. All numbers in one line are separated by one space. Each block ends with a line containing just 0. The last block has only one line with N = 0.

Output

The output contains for each block except the last in the input file one line containing the number of critical places.

Sample Input

5
5 1 2 3 4
0
6
2 1 3
5 4 6 2
0
0

Sample Output

1
2

/**
uva315 求无向图的割点的个数
解题思路:利用tarjan算法求无向图的割点(套用求割点,桥的模板)
*/
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
using namespace std;
const int maxn=10010;
const int maxm=100010;

struct note
{
    int v,next;
    bool cut;
}edge[maxm];

int head[maxn],ip;

void init()
{
    memset(head,-1,sizeof(head));
    ip=0;
}

int low[maxn],dfn[maxn],st[maxn],dex,top;
bool in_st[maxn],cut[maxn];
int add_block[maxn];
int bridge;
int n;

void addedge(int u,int v)
{
    edge[ip].v=v,edge[ip].next=head[u],head[u]=ip++;
}

void tarjan(int u,int pre)
{
    low[u]=dfn[u]=++dex;
    st[top++]=u;
    in_st[u]=true;
    int son=0;
    for(int i=head[u];i!=-1;i=edge[i].next)
    {
        int v=edge[i].v;
        if(v==pre)continue;
        if(!dfn[v])
        {
            son++;
            tarjan(v,u);
            if(low[u]>low[v])low[u]=low[v];
            ///桥
            if(low[v]>dfn[u])
            {
                bridge++;
                edge[i].cut=true;
                edge[i^1].cut=true;
            }
            ///割点
            if(u!=pre&&low[v]>=dfn[u])
            {
                cut[u]=true;
                add_block[u]++;
            }
        }
        else if(low[u]>dfn[v])
            low[u]=dfn[v];
    }
    ///树根,需满足条件分支数大于1
    if(u==pre&&son>1)cut[u]=true;
    if(u==pre)add_block[u]=son-1;
    in_st[u]=false;
    top--;
}

void solve()
{
    memset(dfn,0,sizeof(dfn));
    memset(in_st,false,sizeof(in_st));
    memset(add_block,0,sizeof(add_block));
    memset(cut,false,sizeof(cut));
    dex=top=0;
    bridge=0;
    for(int i=1;i<=n;i++)
    {
        if(!dfn[i])
            tarjan(i,i);
    }
    int ans=0;
    for(int i=1;i<=n;i++)
    {
        if(cut[i])
            ans++;
    }
    printf("%d\n",ans);
}
int g[110][110];
char buf[1010];
int main()
{
    while(~scanf("%d",&n))
    {
        if(n==0)break;
        gets(buf);
        memset(g,0,sizeof(g));
        while(gets(buf))
        {
            if(strcmp(buf,"0")==0)break;
            char *p=strtok(buf," ");
            int u;
            sscanf(p,"%d",&u);
            p=strtok(NULL," ");
            int v;
            while(p)
            {
                sscanf(p,"%d",&v);
                p=strtok(NULL," ");
                g[u][v]=g[v][u]=1;
            }
        }
        init();
        for(int i=1;i<=n;i++)
        {
            for(int j=i+1;j<=n;j++)
            {
                if(g[i][j])
                {
                    addedge(i,j);
                    addedge(j,i);
                }
            }
        }
        solve();
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值