决策树性质
优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。
缺点:可能会产生过度匹配问题。
使用数据类型:数值型和标称型。
决策树伪代码
输入:训练集 D={(x1,y1),(x2,y2),...,(xn,yn)}
属性集 A={a1,a2,...,ad}
输出: 以node为根结点的一颗决策树
过程:createBranch()
检测数据集中的每个子项是否属于同一分类:
if so return 类标签;
else
寻找划分数据集的最好特征
划分数据集
创建分支节点
for 每个划分的子集
调用函数createBranch并增加返回结果到分支界结点中
return 分支结点
几点说明
- 最好的特征是指使得当前数据集信息增益最大的特征。
- 一般而言,信息增益越大,则意味着使用属性a来进行划分所获得的“纯度提升”越大。
- 决策树算法有可能出现过拟合现象。
数据集
from http://archive.ics.uci.edu/ml/machine-learning-databases/lenses/lenses.names
- Number of Instances: 24
- Number of Attributes: 4 (all nominal)
- Attribute Information:
- age of the patient:
- (1) young
- (2) pre-presbyopic
- (3) presbyopic
- spectacle prescription:
- (1) myope
- (2) hypermetrope
- astigmatic:
- (1) no
- (2) yes
- tear production rate:
- (1) reduced
- (2) normal
- Class Distribution:
- hard contact lenses: 4
- soft contact lenses: 5
- no contact lenses: 15
决策树算法python实现
main.py
import trees
import treePlotter
fr = open('lenses.txt')
lenses = [inst.strip().split('\t') for inst in fr.readlines()]
lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate']
lensesTree = trees.createTree(lenses, lensesLabels)
treePlotter.createPlot(lensesTree)
trees.createTree
#input:DataSet, Attributes
#output;decision tree
def createTree(dataSet,labels):
classList = [example[-1] for example in dataSet]
if classList.count(classList[0]) == len(classList):
return classList[0] #stop splitting when all of the classes are equal
if len(dataSet[0]) == 1: #stop splitting when there are no more features in dataSet
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet)
bestFeatLabel = labels[bestFeat]
myTree = {bestFeatLabel:{}}
del(labels[bestFeat])
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
for value in uniqueVals:
subLabels = labels[:] #copy all of labels, so trees don't mess up existing labels
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
return myTree
trees.majorityCnt
#input:list
#output:the most frequent num in the list
#algorithm:hash
def majorityCnt(classList):
classCount={}
for vote in classList:
if vote not in classCount.keys(): classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
trees.chooseBestFeatureToSplit
信息增益: Gain(D,a)=Ent(D)−∑Vv=1|Dv|DEnt(Dv)
D :待划分的数据集合;
a :划分当前数据集的特征;
V :当前特征的离散取值个数。
#input: dataSet
#output: current bestFeature
#algorithm: find the feature with best information gain
def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1 #the last column is used for the labels
baseEntropy = calcShannonEnt(dataSet)
bestInfoGain = 0.0; bestFeature = -1
for i in range(numFeatures): #iterate over all the features
featList = [example[i] for example in dataSet]#create a list of all the examples of this feature
uniqueVals = set(featList) #get a set of unique values
newEntropy = 0.0
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet)/float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet)
infoGain = baseEntropy - newEntropy #calculate the info gain; ie reduction in entropy
if (infoGain > bestInfoGain): #compare this to the best gain so far
bestInfoGain = infoGain #if better than current best, set to best
bestFeature = i
return bestFeature #returns an integer
trees.calcShannonEnt
信息熵:
Ent(D)=−∑k=1|y|pklog2pk
|y| : 数据集 D 中,样本种类的个数。
#input: current dataSet
#output: the information gain of current dataSet
#algorithm: Ent(D)
def calcShannonEnt(dataSet):
numEntries = len(dataSet)
labelCounts = {}
for featVec in dataSet: #the the number of unique elements and their occurance
currentLabel = featVec[-1]
if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0.0
for key in labelCounts:
prob = float(labelCounts[key])/numEntries
shannonEnt -= prob * log(prob,2) #log base 2
return shannonEnt
trees.splitDataSet
假定离散属性
a 有 V 个可能的取值a1,a2,...,aV ,若使用 a 来对样本集D 进行划分则会产生 V 个分支结点,其中第v 个分支结点包含了 D 中所有在属性a 上取值为 aV 的样本,记为 Dv 。
'''
input: dataSet: the dataset we'll split;
axis: the feature we'll split on;
value: the value of the feature.
output: dataset splitting on a given feature.
'''
def splitDataSet(dataSet, axis, value):
retDataSet = []
for featVec in dataSet:
if featVec[axis] == value:
reducedFeatVec = featVec[:axis] #chop out axis used for splitting
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec)
return retDataSet
决策树可视化
使用Matplotlib注解绘制决策树
Decision Tree
存在的问题及解决方式
过拟合
上面提到决策树算法中可能出现“过拟合”问题,决策树算法中解决过拟合问题通常使用剪枝的方法。决策树剪枝策略有“预剪枝”和“后剪枝”。
预剪枝
预剪枝是指在决策树生成过程中,对每个结点在划分前先进行估计,若当前结点的划分不能带来决策树泛化性能提升,则停止划分并将当前结点标记为叶结点。
后剪枝
后剪枝则是从训练集生成一颗完整的决策树,然后自底向上地对非叶结点进行考察,若将该结点对应的子树替换为叶结点能带来决策树泛化性能提升,则将该子树替换为叶结点。