hdoj1018--Big Number

本文介绍了如何通过数学方法计算给定整数的阶乘的位数,包括使用对数运算来估算阶乘的大小。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description
In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of digits in the factorial of the number.

Input
Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 ≤ n ≤ 107 on each line.

Output
The output contains the number of digits in the factorial of the integers appearing in the input.

Sample Input
2 10 20

Sample Output
7 19
算法:
我们知道了一个正整数a的位数等于(int)log10(a) + 1,
现在来求n的阶乘的位数:
假设A=n!=1*2*3*......*n,那么我们要求的就是
(int)log10(A)+1,而:
log10(A)
        =log10(1*2*3*......n)  (根据log10(a*b) = log10(a) + log10(b)有)
         =log10(1)+log10(2)+log10(3)+......+log10(n)
总结一下:n的阶乘的位数等于
 (int)(log10(1)+log10(2)+log10(3)+......+log10(n)) + 1
#include<iostream>
#include<cmath>
using namespace std;

double fun(int n)
{
	return log10(n*1.0);
}

int main()
{
	int n,t,i,r;
	double s;
	while(cin>>n)
	{
		while(n--)
		{
			s=0;
			cin>>t;
			for(i=2;i<=t;i++)
			{
				s+=fun(i);
			}
			r=ceil(s);
			cout<<r<<endl;
		}
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值