Max Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 127665 Accepted Submission(s): 29582
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence.
If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2: 7 1 6
刚开始我想的方法是把子数组全部找到,用sum_max,min,max存放结果超时了,然后看到这种解法下面是AC代码:
#include<iostream>
#include<string>
#include<map>
using namespace std;
int a[100000];
int main()
{
int n,m,i,j,flag=1;
cin>>n;
while(n--)
{
cin>>m;
for(i=0;i<m;i++)
cin>>a[i];
cout<<"Case "<<flag<<':'<<endl;
int mi=0,ma=0;//mi是开始,ma是结尾
int pos=0;//pos作为一个存放临时初始位置
int sum,max_sum;//sum存放变化的最大值,max_sum存放最终的最大值
sum=max_sum=a[0];
for(i=1;i<m;i++)
{
sum+=a[i];
if(a[i]>sum)
{
sum=a[i];
pos=i;
}//找到起始位置i
if(sum>max_sum)
{
max_sum=sum;
mi=pos;
ma=i;
}//不断的更新最大值,然后记下最后的位置
}
cout<<max_sum<<' '<<mi+1<<' '<<ma+1<<endl;
flag++;
if(n!=0)cout<<endl;//格式要求,最后一行没有空格
}
return 0;
}