LRJ算法入门经典第二版上面写错了,害得我想了半天。。。
V : 点数, E :边数 F :面数
欧拉公式 V - E + F = 2;
V = n + n / 4 sum(i * (n - 2 - i)); [ 0 <= i <= n - 2];
E = n + n / 2 sum((i * (n - 2 - i ) + 1); [ 0 <= i <= n - 2];
代码实现:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<list>
#include<cmath>
#include<string>
#include<sstream>
#include<ctime>
using namespace std;
#define _PI acos(-1.0)
#define INF (1 << 10)
#define esp 1e-9
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> pill;
/*===========================================
===========================================*/
LL _V(LL n){ /*求点*/
LL ans = 0;
for(LL i = 0 ; i <= n - 2 ; i++)
ans = ans + i * (n - 2 - i);
LL _ans = n + n * ans / 4;
return _ans;
}
LL _E(LL n){ /*求面*/
LL ans = 0;
for(LL i = 0 ; i <= n - 2; i++)
ans = ans + (i * (n - 2 - i) + 1);
LL _ans = n + n * ans / 2;
return _ans;
}
int main(){
int T;
scanf("%d",&T);
while(T--){
LL N;
scanf("%I64d",&N);
LL V = _V(N);
LL E = _E(N);
printf("%I64d\n",1 + E - V);
}
return 0;
}