HDU 4810 Wall Painting (位操作-异或)

本文针对一个在线评测系统的题目,介绍了一种利用二进制位运算和组合数学来解决特定异或求和问题的方法。通过对输入数字的二进制表示进行分析,并结合选择不同数量数字进行异或操作的组合计数,最终实现了高效求解。

OJ题目:click here~~

题目分析:给n个数,从这n个数中选择i个数,共有c(n , i)种情况,将每种情况中的i个数异或,将这c(n , i)个异或结果求和,就得到第i个输出结果,i属于[1  n]。

求x个数的异或,等于分别对x个数的同一二进制位进行异或,然后加权求和。于是将n个数表示成二进制的形式,对于本题,32位就够。因为,奇数个1的异或 = 1 , 偶数个1的异或 = 0 。 统计每位上1的个数 ,然后对于第j个二进制位,枚举所选中的1的个数,加权求和,即可得结果。将对n个数的处理,转化成对32个位的处理。

AC_CODE

const int mod = 1000003;
int  num[35] ;
LL c[1002][1002] ,ans[1002];

void init(){
    int i , j;
    for(i = 0;i <= 1001;i++) c[i][0] = 1,c[i][i] = 1;
    for(i = 1;i <= 1001;i++)
        for(j = 1;j < i;j++)
        c[i][j] = (c[i - 1][j - 1] + c[i - 1][j])%mod;
}

void change(int x){
    int k = 0;
    while(x){
        if(x&1) num[k]++;
        x >>= 1;
        k++;
    }
}

int main()
{
    int n;
    init();
    while(scanf("%d",&n) != EOF){
        int i , j , k , x;
        memset(num , 0 , sizeof(num));
        memset(ans , 0 , sizeof(ans));
        for(i = 1;i <= n;i++){
            scanf("%d",&x);
            change(x);
        }
        for(i = 1;i <= n;i++){
            for(j = 0;j < 32;j++){
                for(k = 1;k <= i;k += 2)
                    ans[i] += ((c[num[j]][k] * c[n - num[j]][i - k])%mod) * ((1<<j)%mod), ans[i] %= mod;//!!!!!
            }
        }
        printf("%lld",ans[1]);
        for(i = 2;i <= n;i++) printf(" %lld",ans[i]);
        puts("");
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值