1、loc
通过行标签索引行数据
(1)、loc[‘d’]:获取第’d’行数据
import pandas as pd
data = [[1,2,3],[4,5,6]]
index = [‘d’,'e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print(df.loc['e'])
a 4
b 5
c 6
Name: 1, dtype: int64
(2)、loc['d':]获取第‘d’行及之后的多行数据import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print(df.loc['d':])
a b c
d 1 2 3
e 4 5 6
(3)、loc['d',['b']]索引第‘d’行第‘b’列import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print(df.loc['d',['b']])
b 2
Name: d, dtype: int64
通过df.[列标签]可直接获取某列数据,但当标签未知时可通过这种方式获取列数据2、iloc
通过行号获取行数据
(1)、iloc[1]获取第1行数据
import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print(df.iloc[1])
a 4
b 5
c 6
Name: e, dtype: int64
(2)、iloc[0:]获取第0行及之后的多行数据import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print(df.iloc[0:])
a b c
d 1 2 3
e 4 5 6
(3)、iloc[:,[1]]获取第1列数据import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print(df.iloc[:,[1]])
b
d 2
e 5
3、ix前两种的混合索引,Python3已经不使用这种索引方式。