趣头条推荐系统,依据用户属性进knn聚类,对用户兴趣深度挖掘,使用lda主题模型对文章进行分类,使用深度神经网络模型训练doc2vec(文本分析下的情感分析,从文字中自动识别出人们对特定主题的主观看法、情绪以及态度等等) [3] 。离线计算使用svd矩阵分解和item base协同过滤,生成个性化推荐文章集,线上实时使用LR预测模型,通过点击反馈对推荐结果进行重排序。将人群和文章进行分类,将用户喜欢的文章推荐给用户。
趣头条推荐系统,依据用户属性进knn聚类,对用户兴趣深度挖掘,使用lda主题模型对文章进行分类,使用深度神经网络模型训练doc2vec(文本分析下的情感分析,从文字中自动识别出人们对特定主题的主观看法、情绪以及态度等等) [3] 。离线计算使用svd矩阵分解和item base协同过滤,生成个性化推荐文章集,线上实时使用LR预测模型,通过点击反馈对推荐结果进行重排序。将人群和文章进行分类,将用户喜欢的文章推荐给用户。