Generate Parentheses

本文介绍了一个使用回溯法生成所有有效括号组合的算法。针对输入的整数n,该算法能够生成所有可能的有效括号字符串组合。文章通过具体实例展示了如何通过递归方式构建这些组合,并附带了完整的Java实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.

For example, given n = 3, a solution set is:

"((()))", "(()())", "(())()", "()(())", "()()()"

思路:backtracking, 注意 rightRemain < leftRemain这个条件的判断,因为不能出现 )(, 剩下的右括号必须大于左括号,换句话说,就是括号必须以左边开始,那么必须先写左边的括号,然后写右边的括号,那么正常情况下:leftRemain > rightRemain,如果不成立那么出现违法括号直接return;

class Solution {
    public List<String> generateParenthesis(int n) {
        List<String> list = new ArrayList<String>();
        StringBuilder sb = new StringBuilder();
        dfs(list, sb, n, n);
        return list;
    }
    
    private void dfs(List<String> list, StringBuilder sb, int leftremain, int rightremain) {
        if(leftremain < 0 || rightremain < 0 || leftremain > rightremain) {
            return;
        }
        if(leftremain == 0 && rightremain == 0) {
            list.add(new String(sb.toString()));
            return;
        }
        if(leftremain > 0) {
            sb.append("(");
            dfs(list, sb, leftremain - 1, rightremain);
            sb.deleteCharAt(sb.length() - 1);
        }
        if(rightremain > 0) {
            sb.append(")");
            dfs(list, sb, leftremain, rightremain - 1);
            sb.deleteCharAt(sb.length() - 1);
        }
    }
}

#include <cassert> /// for assert #include <iostream> /// for I/O operation #include <vector> /// for vector container /** * @brief Backtracking algorithms * @namespace backtracking */ namespace backtracking { /** * @brief generate_parentheses class */ class generate_parentheses { private: std::vector<std::string> res; ///< Contains all possible valid patterns void makeStrings(std::string str, int n, int closed, int open); public: std::vector<std::string> generate(int n); }; /** * @brief function that adds parenthesis to the string. * * @param str string build during backtracking * @param n number of pairs of parentheses * @param closed number of closed parentheses * @param open number of open parentheses */ void generate_parentheses::makeStrings(std::string str, int n, int closed, int open) { if (closed > open) // We can never have more closed than open return; if ((str.length() == 2 * n) && (closed != open)) { // closed and open must be the same return; } if (str.length() == 2 * n) { res.push_back(str); return; } makeStrings(str + ')', n, closed + 1, open); makeStrings(str + '(', n, closed, open + 1); } /** * @brief wrapper interface * * @param n number of pairs of parentheses * @return all well-formed pattern of parentheses */ std::vector<std::string> generate_parentheses::generate(int n) { backtracking::generate_parentheses::res.clear(); std::string str = "("; generate_parentheses::makeStrings(str, n, 0, 1); return res; } } // namespace backtracking /** * @brief Self-test implementations * @returns void */ static void test() { int n = 0; std::vector<std::string> patterns; backtracking::generate_parentheses p; n = 1; patterns = {{"()"}}; assert(p.generate(n) == patterns); n = 3; patterns = {{"()()()"}, {"()(())"}, {"(())()"}, {"(()())"}, {"((()))"}}; assert(p.generate(n) == patterns); n = 4; patterns = {{"()()()()"}, {"()()(())"}, {"()(())()"}, {"()(()())"}, {"()((()))"}, {"(())()()"}, {"(())(())"}, {"(()())()"}, {"(()()())"}, {"(()(()))"}, {"((()))()"}, {"((())())"}, {"((()()))"}, {"(((())))"}}; assert(p.generate(n) == patterns); std::cout << "All tests passed\n"; } /** * @brief Main function * @returns 0 on exit */ int main() { test(); // run self-test implementations return 0; } 解释一下这段代码?
最新发布
03-08
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值