Maximum Number of Points with Cost

You are given an m x n integer matrix points (0-indexed). Starting with 0 points, you want to maximize the number of points you can get from the matrix.

To gain points, you must pick one cell in each row. Picking the cell at coordinates (r, c) will add points[r][c] to your score.

However, you will lose points if you pick a cell too far from the cell that you picked in the previous row. For every two adjacent rows r and r + 1 (where 0 <= r < m - 1), picking cells at coordinates (r, c1) and (r + 1, c2) will subtract abs(c1 - c2) from your score.

Return the maximum number of points you can achieve.

abs(x) is defined as:

  • x for x >= 0.
  • -x for x < 0.

Example 1:

Input: points = [[1,2,3],[1,5,1],[3,1,1]]
Output: 9
Explanation:
The blue cells denote the optimal cells to pick, which have coordinates (0, 2), (1, 1), and (2, 0).
You add 3 + 5 + 3 = 11 to your score.
However, you must subtract abs(2 - 1) + abs(1 - 0) = 2 from your score.
Your final score is 11 - 2 = 9.

思路:这个题是dp,但是brute force是M*N*N,需要 优化,优化就是数学公式展开,发现是个rollingmax,然后用O(1)去计算下一个值,这样优化到O(M*N);

brute force:

for(int i = 1; i < m; i++) {
   for(int j = 0; j < n; j++) {
        for(int k = 0; k < n; k++) {
           dp[i][j] = Math.max(dp[i][j], dp[i - 1][k] + points[i][j] - Math.abs(j - k));
         }
     }
 }

 把绝对值展开:分别讨论 k <= j,  j >= k ,发现前面的k变化是个rolling max,这样每步可以优化成O(1)

/*
   dp[i - 1][k] + points[i][j] - Math.abs(j - k)
  
  k <= j; k = 0, 1, 2,....j;
  dp[i][j] = Math.max(dp[i][j], dp[i - 1][k] + k + points[i][j] - j ;
  
 k >= j;
  dp[i][j] = Math.max(dp[i][j], dp[i - 1][k] - k  + points[i][j] + j);

*/

class Solution {
    public long maxPoints(int[][] points) {
        int m = points.length;
        int n = points[0].length;
        
        long[][] dp = new long[m][n];
        
        // 1st row;
        for(int j = 0; j < n; j++) {
            dp[0][j] = points[0][j];    
        }
        
        // calculate matrix;
        // dp[i][j] = dp[i - 1][k] + points[i][j] - Math.abs(k - j);
        // case 1: k <= j; dp[i][j] = dp[i - 1][k] + points[i][j] - (j - k);   k = 0,1,2,3....j
        //                 dp[i][j] = dp[i - 1][k] + k + points[i][j] - j;
        // case 2: k >= j; dp[i - 1][k] + points[i][j] - k + j;    k = j + 1,....n - 1;
        //                 dp[i - 1][k] - k + points[i][j] + j;
        for(int i = 1; i < m; i++) {
            // k <= j;
            long rollMax = Long.MIN_VALUE;
            for(int j = 0; j < n; j++) {
                rollMax = Math.max(rollMax, dp[i - 1][j] + j);
                dp[i][j] = Math.max(dp[i][j], rollMax + points[i][j] - j);
            }
            // k >= j;
            rollMax = Long.MIN_VALUE;
            for(int j = n - 1; j >= 0; j--) {
                rollMax = Math.max(rollMax, dp[i - 1][j] - j);
                dp[i][j] = Math.max(dp[i][j], rollMax + points[i][j] + j);
            }
        }
        
        long res = 0;
        for(int j = 0; j < n; j++) {
            res = Math.max(res, dp[m - 1][j]);    
        }
        return res;
    }
}

/*
   dp[i - 1][k] + points[i][j] - Math.abs(j - k)
  
  k <= j; k = 0, 1, 2,....j;
  dp[i][j] = Math.max(dp[i][j], dp[i - 1][k] + k + points[i][j] - j ;
  
  j >= k;
  dp[i][j] = Math.max(dp[i][j], dp[i - 1][k] - k  + points[i][j] + j);
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值