Linked List Random Node

本文介绍了一种使用Reservoir Sampling算法从未知长度的链表中高效选取随机节点的方法,确保每个节点被选中的概率相等,且不使用额外空间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given a singly linked list, return a random node's value from the linked list. Each node must have the same probability of being chosen.

Follow up:
What if the linked list is extremely large and its length is unknown to you? Could you solve this efficiently without using extra space?

Example:

// Init a singly linked list [1,2,3].
ListNode head = new ListNode(1);
head.next = new ListNode(2);
head.next.next = new ListNode(3);
Solution solution = new Solution(head);

// getRandom() should return either 1, 2, or 3 randomly. Each element should have equal probability of returning.
solution.getRandom();

思路:reseverior sampling;取到random == 0,就update candidate;

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode() {}
 *     ListNode(int val) { this.val = val; }
 *     ListNode(int val, ListNode next) { this.val = val; this.next = next; }
 * }
 */
class Solution {

    /** @param head The linked list's head.
        Note that the head is guaranteed to be not null, so it contains at least one node. */
    private Random random;
    private ListNode head;
    public Solution(ListNode head) {
        this.head = head;
        this.random = new Random();
    }
    
    /** Returns a random node's value. */
    public int getRandom() {
        int count = 0;
        ListNode candidate = head; // candidate首先是第一个node;
        ListNode cur = head;
        while(cur != null) {
            if(random.nextInt(++count) == 0) {
                candidate = cur;
            }
            cur = cur.next;
        }
        return candidate.val;
    }
}

/**
 * Your Solution object will be instantiated and called as such:
 * Solution obj = new Solution(head);
 * int param_1 = obj.getRandom();
 */

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值