POJ2242_The Circumference of the Circle(几何/三角形外接圆周长/模板)

本文介绍了一种计算由三个非共线点确定的圆的周长的方法,不依赖于直径信息。通过输入三个点的坐标,可以精确计算出圆的周长,并输出结果保留两位小数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The Circumference of the Circle
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 7017 Accepted: 4353

Description

To calculate the circumference of a circle seems to be an easy task - provided you know its diameter. But what if you don't? 

You are given the cartesian coordinates of three non-collinear points in the plane. 
Your job is to calculate the circumference of the unique circle that intersects all three points. 

Input

The input will contain one or more test cases. Each test case consists of one line containing six real numbers x1,y1, x2,y2,x3,y3, representing the coordinates of the three points. The diameter of the circle determined by the three points will never exceed a million. Input is terminated by end of file.

Output

For each test case, print one line containing one real number telling the circumference of the circle determined by the three points. The circumference is to be printed accurately rounded to two decimals. The value of pi is approximately 3.141592653589793.

Sample Input

0.0 -0.5 0.5 0.0 0.0 0.5
0.0 0.0 0.0 1.0 1.0 1.0
5.0 5.0 5.0 7.0 4.0 6.0
0.0 0.0 -1.0 7.0 7.0 7.0
50.0 50.0 50.0 70.0 40.0 60.0
0.0 0.0 10.0 0.0 20.0 1.0
0.0 -500000.0 500000.0 0.0 0.0 500000.0

Sample Output

3.14
4.44
6.28
31.42
62.83
632.24
3141592.65

Source

解题报告
表示几何模板党。。。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>

#define PI  3.141592653589793
using namespace std;
struct point
{
    double x,y;
}p1,p2,p3;
struct line
{
    point a,b;
};
point intersection(line u,line v)
{
    point ret=u.a;
    double t=((u.a.x-v.a.x)*(v.a.y-v.b.y)-(u.a.y-v.a.y)*(v.a.x-v.b.x))
    /((u.a.x-u.b.x)*(v.a.y-v.b.y)-(u.a.y-u.b.y)*(v.a.x-v.b.x));
    ret.x+=(u.b.x-u.a.x)*t;
    ret.y+=(u.b.y-u.a.y)*t;
    return ret;
}
point circumcenter(point a,point b,point c)
{
    line u,v;
    u.a.x=(a.x+b.x)/2;
    u.a.y=(a.y+b.y)/2;
    u.b.x=u.a.x-a.y+b.y;
    u.b.y=u.a.y+a.x-b.x;
    v.a.x=(a.x+c.x)/2;
    v.a.y=(a.y+c.y)/2;
    v.b.x=v.a.x-a.y+c.y;
    v.b.y=v.a.y+a.x-c.x;
    return intersection(u,v);
}
double dis(point p1,point p2)
{
    return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y));
}
int main()
{
    while(cin>>p1.x>>p1.y>>p2.x>>p2.y>>p3.x>>p3.y)
    {
        point c=circumcenter(p1,p2,p3);
//        printf("%.2lf %.2lf\n",c.x,c.y);
        double r=dis(p1,c);
        //printf("%.2lf\n",r);
        printf("%.2lf\n",2*PI*r);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值