线段树 CodeForces 61E 逆序对

本文深入探讨了逆序对概念的变形,从传统的两数间关系拓展到三数间的关系,并通过线段树技术进行高效计算。通过实例分析,详细解释了如何利用线段树来解决此类问题,提供了清晰的代码实现和优化思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目大意:逆序对的变形,原来是两个数之间,现在是3个数之间

题目思路:作为弱逼的我表示不太会,然后跟队友扯了扯这道题,于是被点拨了(俩逗比队友不会敲233)

思路就是枚举中间的数,然后看他前面有几个大于他的,在乘上后面小于他的(可以根据前面推出来),枚举完事后的和就是答案,具体线段树怎么记录逆序对请看:http://blog.youkuaiyun.com/houxinssdut/article/details/38513669 

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
const int maxn = 1000100;
const int inf = 0x3f3f3f3f;
int sum[maxn<<2];
inline void pushup(int rt){
    sum[rt] = sum[rt<<1] + sum[rt<<1|1];
}
inline void build(int l,int r,int rt){
    if(l == r){
        sum[rt] = 0;
        return;
    }
    int m = (l + r)>>1;
    build(lson);
    build(rson);
    pushup(rt);
    return;
}
inline void update(int t,int l,int r,int rt){
    if(l == r){
        sum[rt] ++;
        return;
    }
    int m = (l + r)>>1;
    if(t <= m)update(t,lson);
    else update(t,rson);
    pushup(rt);
}
int query(int L,int R,int l,int r,int rt){
    if(L <= l&& r <= R){
        return sum[rt];
    }
    int m = (l + r)>>1;
    int ans = 0;
    if(L <= m)ans += query(L,R,lson);
    if(R > m)ans += query(L,R,rson);
    return ans;
}
int nn[maxn];
struct Node{
    int nn,id,turn;
}node[maxn];
bool cmp1(Node a,Node b){
    return a.nn < b.nn;
}
bool cmp2(Node a,Node b){
    return a.id < b.id;
}
int main(){
    int n;
    while(~scanf("%d",&n)){
        for(int i = 1;i <= n;i ++){
            scanf("%d",&node[i].nn);
            node[i].id = i;
        }
        sort(node+1,node+1+n,cmp1);
        node[1].turn = 1;
        for(int i = 2;i <= n;i ++){
            if(node[i].nn > node[i-1].nn)
                node[i].turn = node[i-1].turn + 1;
            else node[i].turn = node[i-1].turn;
        }
        sort(node+1,node+1+n,cmp2);
        build(1,n,1);//cout<<mmin[1];
        long long ans = 0;
        update(node[1].turn,1,n,1);
        for(int i = 2;i < n;i ++){
            long long bb = query(node[i].turn+1,n,1,n,1);
            ans += bb*(node[i].turn-1 - i+1+bb);
            update(node[i].turn,1,n,1);
        }
        cout<<ans<<endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值